APPENDIX J: HYDROLOGY REPORT AND USMP/LID REPORT

HYDROLOGY REPORT

City of Santa Clarita

MetroWalk

TR 83087

Prepared For: **New Urban West, INC.** 2001 Wilshire Blvd., Suite 401 Santa Monica, CA 91405

Prepared By: Alliance Land Planning & Engineering, Inc. 2248 Faraday Ave. Carlsbad, CA 92008

OCTOBER 12, 2020

JN 1934

Table of Contents

PROJECT DESCRIPTION	. 1
METHODOLOGY	.1
EXISTING CONDITION DRAINAGE	.1
PROPOSED CONDITION DRAINAGE	. 2
RESULTS	. 2
HYDROMODIFICATION FOR PROJECT	. 2
WATER QUALITY	. 2
CONCLUSION	. 3

List of Appendices

- Appendix A Time of Concentration (TC)
- Appendix B Hydrologic Modeling Output (LAR04)
- Appendix C Debris Bulking Calculations
- Appendix D Vista Canyon Hydrology Report
- Appendix E Storm Drain Plans for Vista Canyon Phase 1 (MTD 1851)
- Appendix F Hydrology Exhibit

Project Description

The MetroWalk project is an approximately 20.4 ac residential development project located in the City of Santa Clarita. The proposed project includes 498 units with a mixture of senior apartments, townhomes, a private park, a recreation center, landscaping, and hardscape. The project site is currently undeveloped land. MetroWalk is bordered by Lost Canyon Road to the West, Harriman Drive/Vista Canyon Apartments to the North, and the Southern Pacific Railroad on the South.

Methodology

Methods currently outlined in the Los Angeles County Hydrology Manual have been used throughout this study. Time of concentration (TC) values were calculated using County of Los Angeles, HydroCalc software. To calculate TC's HydroCalc uses a subarea's acreage, flow path length/slope, imperviousness, and some of the info provided in Table 1 below. Refer to Appendix A for full TC calculations.

Flowrates were calculated using the Modified Rational Method and County of Los Angeles approved, LAR04 software. Even though HydroCalc does calculate flowrates those values are not approved for use. A summary of general hydrologic parameters is taken from the relevant 50-yr, 24-hr isohyetal map is provided in Table 1 below. The hydrologic parameters map is provided in Appendix A.

Table 1 - General Hydrologic Parameters

Parameter	Value
50-yr. 24-Hr Isohyetal Map	Mint Canyon
50-yr Inches of Rainfall (24 Hours)	6.10 in
Soil Classification Area	20
Debris Potential Area (DPA Zone)	9

Design Storm Event

The design storm event modeled for this project follows Los Angeles County criteria utilizing a 50-yr storm event for all subareas.

Existing Condition Drainage

The project site currently drains in a northwest direction and into an existing 42" RCP storm drain (MTD 1851) which was constructed with the Vista Canyon development and will be owned/maintained by the County of Los Angeles once it is turned over to them in the near future. The existing capacity of the 42" storm drain is 98.8 cfs. The MetroWalk project site and the upstream railroad property was included in the Vista Canyon hydrology report (Appendix D) for MTD 1851 (Appendix E), at Line 'A' from station 7+57.30 to station 3+48.14, which yielded this flowrate. A desilting basin exists at the inlet to the 42" storm drain to collect debris from the natural condition site. Once the MetroWalk project is constructed the desilting basin will be eliminated as it will no longer be needed.

Proposed Condition Drainage

In the proposed condition, all runoff from the project will be captured in area drains and routed through an underground storm drain system which will tie into the existing 42" storm drain per MTD 1851. Prior to discharge into MTD 1851 the first-flush runoff will be treated in an underground infiltration chamber located at the northwest corner of the site. Additionally, runoff from the MTA property will be conveyed through the project site via a storm drain line at the west end of the site that will also tie into the existing 42" storm drain in the northwest corner of the site. Runoff from both the MetroWalk and MTA properties was included in the hydrology report for MTD 1851 which has sufficient capacity to accept the proposed flowrates. See Appendix D for the Hydrology Report associated with MTD 1851 and Appendix E for the relevant MTD 1851 sheets.

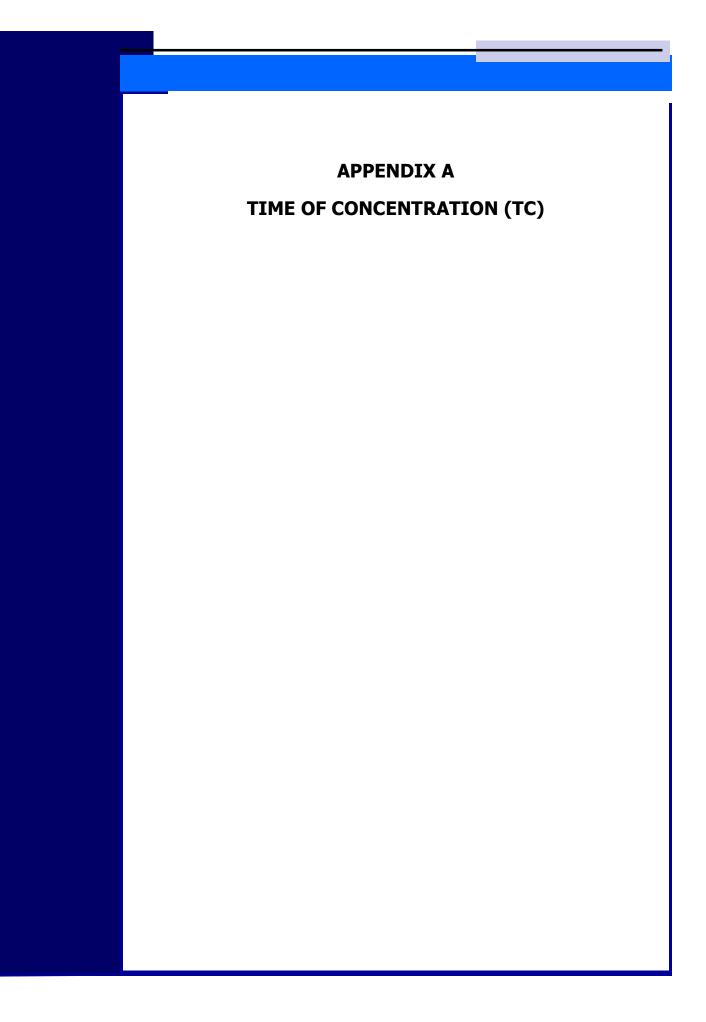
Results

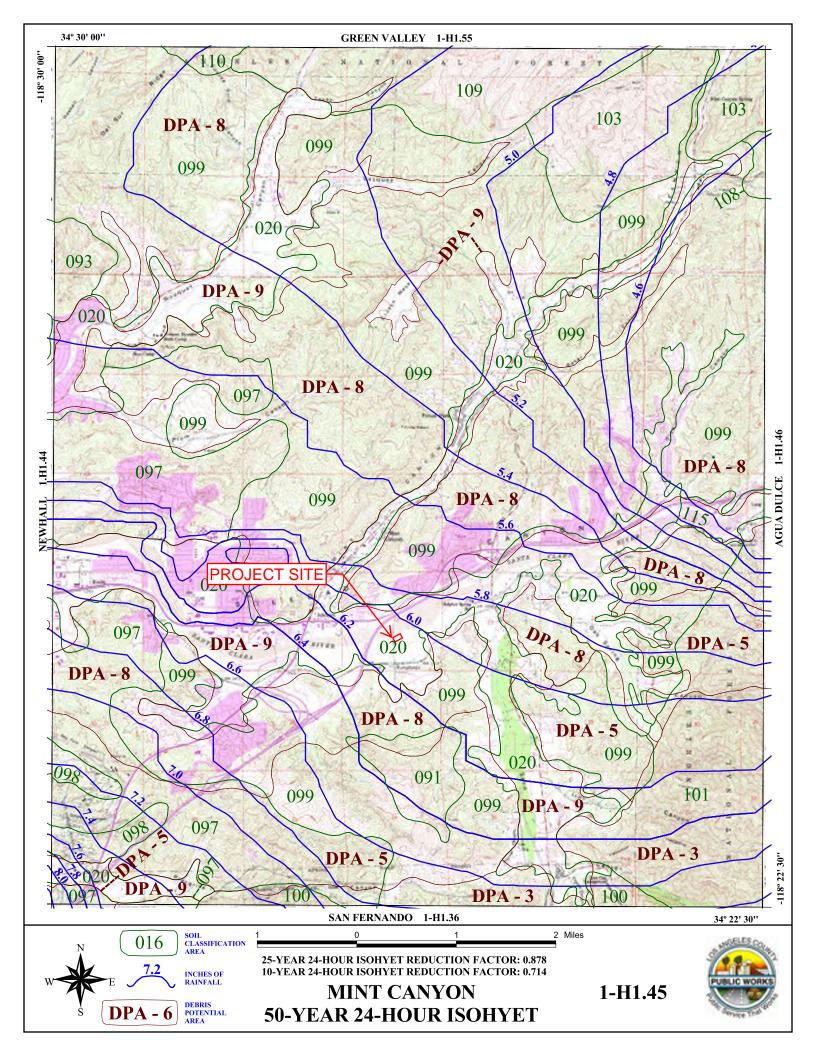
During the flood events the project will outlet flow to MTD 1851 and does not exceed the MTD's design capacity. The total flowrate generated by the project is 61.34 cfs. Table 2 shows a summary of the MTD max flowrate of 98.75 cfs and project flowrate of 61.34 cfs.

Table 2 – MTD 1851 Flowrate	S
-----------------------------	---

PROJECT	FLOWRATE Q
	cfs
Q_allowable	98.75
Q_design	
plus upstream land	61.34

Hydromodification


This project discharges to MTD 1851 which is a County owned/maintained storm drain line and therefore per City/County stormwater policy the project is exempt from hydromodification.


Water Quality

Water quality aspects of this project are covered separately in detail within the USMP/LID Report. Water quality treatment will be achieved through an onsite underground water quality chamber system at the northwest corner of the project. See the USMP report for additional info and details. MetroWalk Hydrology Report

Conclusion

The proposed MetroWalk project is in compliance with the approved hydrology report for the MTD 1851 in which the project drains into. The proposed developed flowrate for the project of 61.34 cfs is less than the approved flowrate per MTD 1851 of the 98.75 cfs. Therefore, it is concluded that the project will have no negative impact on the existing downstream drainage system.

roject Name	METROWALK
Subarea ID	1A
vrea (ac)	1.6
low Path Length (ft)	438.0
low Path Slope (vft/hft)	0.0091
0-yr Rainfall Depth (in)	6.1
Percent Impervious	0.86
Soil Type	20
Design Storm Frequency	50-yr
ire Factor	0
ID	False
Output Results	
lodeled (50-yr) Rainfall Depth	(in) 6.1
Peak Intensity (in/hr) Indeveloped Runoff Coefficien	3.1071
Indeveloped Runoff Coefficien	t (Cu) 0.6125
Developed Runoff Coefficient (C	Cd) 0.8597
Time of Concentration (min)	7.0
Clear Peak Flow Rate (cfs)	4.2741
Burned Peak Flow Rate (cfs) 4-Hr Clear Runoff Volume (ac-	-ft) 4.2741
4-Hr Clear Runoff Volume (ac-	-ft) 0.6434 -ft) 28024.7267
, ,	· ·
	ydrograph (METROWALK: 1A)
н	
4.5 H	
4.5 H	
4.5 H 4.0 3.5 3.0	
4.5 H 4.0 - 3.5 - 3.0 -	
4.5 H 4.0 3.5 3.0	
4.5 4.0 3.5 3.0 (stp) 2.0 -	
4.5 4.0 3.5 3.0 (§) 2.5 (§) 2.0 1.5 -	
4.5 4.0 3.5 3.0 (sg) 2.5 1.5 1.0 -	

roject Name	METROWALK
roject Name ubarea ID	2A
rea (ac)	2.6
low Path Length (ft)	399.0
low Path Slope (vft/hft)	0.0125
D-yr Rainfall Depth (in)	6.1
ercent Impervious	0.86
oil Type	20
esign Storm Frequency	50-yr
ire Factor	0
D	False
utput Results	
odeled (50-vr) Rainfall Depth (in)	6.1
eak Intensity (in/hr)	3.3405
eak Intensity (in/hr) ndeveloped Runoff Coefficient (Cu)	0.6254
eveloped Runoff Coefficient (Cd)	0.8616
ime of Concentration (min)	6.0
lear Peak Flow Rate (cfs)	7.483
urned Peak Flow Rate (cfs)	7.483
4-Hr Clear Runoff Volume (ac-ft)	1.0455
4-Hr Clear Runoff Volume (cu-ft)	45542.0768
8 Hydrograph (MET	ROWALK, ZA)
7-	
7 - 6 -	
5 -	
5 -	
6	
5 -	
6 5 (sts) 4	
6 5 (sts) 4	
6 5 (\$1) wold 3	
6 5 (\$1) wold 3	
6 5 (\$2) 4 3	

Iow Path Length (ft)697.0Iow Path Slope (vft/hft)0.01440-yr Rainfall Depth (in)6.1ercent Impervious0.82oil Type20esign Storm Frequency50-yrire Factor0IDFalsevutput ResultsIodeled (50-yr) Rainfall Depth (in)6.1eak Intensity (in/hr)2.9181ndeveloped Runoff Coefficient (Cu)0.5992eveloped Runoff Coefficient (Cd)0.8458ime of Concentration (min)8.0lear Peak Flow Rate (cfs)7.4047urned Peak Flow Rate (cfs)7.40474-Hr Clear Runoff Volume (ac-ft)1.162	VALK
Area (ac) 3.0 low Path Length (ft) 697.0 low Path Slope (vft/hft) 0.0144 0-yr Rainfall Depth (in) 6.1 erecent Impervious 0.82 boil Type 20 besign Storm Frequency 50-yr ire Factor 0 ID False Dutput Results Modeled (50-yr) Rainfall Depth (in) 6.1 reak Intensity (in/hr) 2.9181 Indeveloped Runoff Coefficient (Cu) 0.5992 beveloped Runoff Coefficient (Cu) 0.8458 ime of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 4-Hr Clear Runoff Volume (ac-ft) 1.162 4-Hr Clear Runoff Volume (ac-ft) 50615. ⁻ Hydrograph (METROWALK: 3A)	
Flow Path Length (ft) 697.0 Flow Path Slope (vft/hft) 0.0144 30-yr Rainfall Depth (in) 6.1 Percent Impervious 0.82 Soil Type 20 Design Storm Frequency 50-yr Fire Factor 0 ID False Dutput Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Jndeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Fime of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
Flow Path Slope (vft/hft) 0.0144 50-yr Rainfall Depth (in) 6.1 Percent Impervious 0.82 Soil Type 20 Design Storm Frequency 50-yr Fire Factor 0 ID False Dutput Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Jndeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Fime of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
50-yr Rainfall Depth (in) 6.1 Percent Impervious 0.82 Soil Type 20 Dosign Storm Frequency 50-yr Fire Factor 0 LID False Dutput Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Jndeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Fime of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
Percent Impervious 0.82 Soil Type 20 Design Storm Frequency 50-yr Fire Factor 0 LD False Dutput Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Undeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615.	
Soil Type 20 Design Storm Frequency 50-yr Fire Factor 0 LID False Dutput Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Undeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (ac-ft) 50615. ⁻ Hydrograph (METROWALK: 3A)	
Design Storm Frequency 50-yr Fire Factor 0 LID False Output Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Jndeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. ⁻ Hydrograph (METROWALK: 3A)	
Fire Factor 0 ID False Output Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Jndeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
LID False False Dutput Results Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Jndeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. ⁻ Hydrograph (METROWALK: 3A)	
Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Undeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Fime of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
Modeled (50-yr) Rainfall Depth (in) 6.1 Peak Intensity (in/hr) 2.9181 Undeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Fime of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
Peak Intensity (in/hr) 2.9181 Undeveloped Runoff Coefficient (Cu) 0.5992 Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615.*	
Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A) Hydrograph (METROWALK: 3A)	
Developed Runoff Coefficient (Cd) 0.8458 Time of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A) Hydrograph (METROWALK: 3A)	
Fime of Concentration (min) 8.0 Clear Peak Flow Rate (cfs) 7.4047 Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615.* Hydrograph (METROWALK: 3A)	
Clear Peak Flow Rate (cfs) 3urned Peak Flow Rate (cfs) 24-Hr Clear Runoff Volume (ac-ft) 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A) 6 5 6 5 4 3	
Burned Peak Flow Rate (cfs) 7.4047 24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
24-Hr Clear Runoff Volume (ac-ft) 1.162 24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
24-Hr Clear Runoff Volume (cu-ft) 50615. Hydrograph (METROWALK: 3A)	
Hydrograph (METROWALK: 3A)	44
3-	-
	-
2-	
//	
1-	
0 200 400 600 800 1000 12	

METROWALK 4A 2.0 647.0 0.0093 6.1 0.88 20 50-yr 0 False
4A 2.0 647.0 0.0093 6.1 0.88 20 50-yr 0
2.0 647.0 0.0093 6.1 0.88 20 50-yr 0
0.0093 6.1 0.88 20 50-yr 0
6.1 0.88 20 50-yr 0
0.88 20 50-yr 0
20 50-yr 0
50-yr 0
0
False
6.1
2.9181
0.5992
0.8639
8.0
5.0418
5.0418
0.8189
35671.6526
ALK: 4A)
-
-
0000 1200 1400 1600

nput Parameters	
Project Name	METROWALK
Subarea ID	5A
vrea (ac)	5.5
low Path Length (ft)	886.0
low Path Slope (vft/hft)	0.009
0-yr Rainfall Depth (in)	6.1
Percent Impervious	0.68
Soil Type	20
Design Storm Frequency	50-yr
ire Factor	0
ID	False
Output Results	
lodeled (50-yr) Rainfall Depth (in)	6.1
Peak Intensity (in/hr)	2.5124
Indeveloped Runoff Coefficient (Cu) Developed Runoff Coefficient (Cd)	0.5625
Developed Runoff Coefficient (Cd)	0.792
ime of Concentration (min)	11.0
Clear Peak Flow Rate (cfs)	10.944
Burned Peak Flow Rate (cfs)	10.944
4-Hr Clear Runoff Volume (ac-ft) 4-Hr Clear Runoff Volume (cu-ft)	1.8455 80389.0197
Hydrograph	(METROWALK: 5A)
12 Hydrograph	(METROWALK: 5A)
12 Hydrograph 10	(METROWALK: 5A)
10	(METROWALK: 5A)
12	(METROWALK: 5A)
10 - 8 -	(METROWALK: 5A)
10	(METROWALK: 5A)
12 10 8 6	(METROWALK: 5A)
10 10 8	(METROWALK: 5A)
12 10 8 6	(METROWALK: 5A)
12 10 8 - (\$5) MOL 4 -	(METROWALK: 5A)

roject Name	METROWALK		
ubarea ID	6B		
rea (ac)	10.4		
low Path Length (ft)	1096.0		
low Path Slope (vft/hft)	0.0164		
0-yr Rainfall Depth (in)	6.1		
ercent Impervious	0.08		
oil Type	20		
esign Storm Frequency	50-yr		
ire Factor	0		
ID	False		
utput Results			
odeled (50-yr) Rainfall Depth (in)	6.1		
eak Intensity (in/hr)	2.2432		
ndeveloped Runoff Coefficient (Cu)	0.5381		
ndeveloped Runoff Coefficient (Cu) eveloped Runoff Coefficient (Cd)	0.567		
ime of Concentration (min)	14.0		
Clear Peak Flow Rate (cfs)	13.2288		
urned Peak Flow Rate (cfs)	13.2288		
4-Hr Clear Runoff Volume (ac-ft)	1.1822		
4-Hr Clear Runoff Volume (cu-ft)	51495.9378		
14 Hydrograph (ME			
Hvdrograph (ME			
14 Hydrograph (ME			
Hvdrograph (ME			
14 Hydrograph (ME			
14 Hydrograph (ME			
14 Hydrograph (ME 12			
14 12 10			
14 Hydrograph (ME 12 10			
14 Hydrograph (ME 12 10			
14 12 10 (st) 8			
14 Hydrograph (ME 12 10			
14 12 10 (st) 8			
14 12 10 (st) 8			
Hydrograph (ME 12 10 (st) MG 6			
Hydrograph (ME 12 10 (st) MOH 6			
Hydrograph (ME 12 10 (st) MOH 6			
14 12 10 (st) wold 6 4			
14 12 10 (st) wold 6 4			

roject Name	5	METROWALK	
ubarea ID		7B	
rea (ac)		2.1	
low Path Length	(ft)	533.0	
low Path Slope ((vft/hft)	0.0188	
0-yr Rainfall Dep	oth (in)	6.1	
ercent Imperviou	JS	0.08	
oil Type		20	
esign Storm Fre	quency	50-yr	
ire Factor		0	
ID		False	
output Results			
lodeled (50-yr) F	Rainfall Depth (in)	6.1	
eak Intensity (in/	/hr) hoff Coefficient (Cu)	2.9181	
Indeveloped Rur	nott Coetticient (Cu)	0.5992	
veveloped Runof	f Coefficient (Cd) ation (min)	0.6232	
line of Concentra	alion (min) Rote (ofe)	8.0	
lear Peak Flow I	rale (US) v Pata (cfs)	3.8191 3.8191	
Surned Peak Flow	ff Volume (20-ft)		
24-Hr Clear Runoff Volume (ac-ft)		0.2401	
4-Hr Clear Runo	ff Volume (cu-ft)	10460.5804	
4-Hr Clear Runo	ff Volume (cu-ft) Hydrograph (ME		
			_
4.0			_
4.0			
4.0			
4.0			
4.0			
4.0 3.5 3.0 2.5			-
4.0 3.5 3.0 2.5			
4.0 3.5 3.0 2.5			-
4.0 3.5 3.0 2.5 (\$J) MOIL			-
4.0 3.5 3.0 2.5			-
4.0 3.5 3.0 2.5 (\$J) MOIL			
4.0 3.5 3.0 2.5 (\$5) Moly 1.5 1.0			
4.0 3.5 3.0 2.5 (sj5) wolj 1.5			
4.0 3.5 3.0 2.5 (St) 2.0 1.5 1.0 0.5 0.0		TROWALK: 7B)	1600

nput Parameters	
roject Name	METROWALK
Subarea ID	8B
Area (ac)	5.6
Flow Path Length (ft)	1109.0
Flow Path Slope (vft/hft)	0.0171
Flow Path Slope (vft/hft) 0-yr Rainfall Depth (in)	6.1
Percent Impervious	0.08
Soil Type	20
Design Storm Frequency	50-yr
Fire Factor	0
ID	False
Dutput Results	
•	6.1
Modeled (50-yr) Rainfall Depth (in) Peak Intensity (in/hr)	6.1 2.2432
Indeveloped Pupoff Coefficient (Cu)	0.5381
Indeveloped Runoff Coefficient (Cu) Developed Runoff Coefficient (Cd)	0.5381
Time of Concentration (min)	14.0
Clear Peak Flow Rate (cfs)	7.1232
Burned Peak Flow Rate (cfs)	7.1232
24-Hr Clear Runoff Volume (ac-ft)	0.6366
24-Hr Clear Runoff Volume (cu-ft)	27728.5819
Hydrogroph /MET	
a Hydrograph (WE	TROWALK: 8B)
8 Hydrograph (ME	TROWALK: 8B)
8 Hydrograph (ME	TROWALK: 8B)
8 7-	TROWALK: 8B)
	TROWALK: 8B)
7-	TROWALK: 8B)
	TROWALK: 8B)
7-	TROWALK: 8B)
7-	TROWALK: 8B)
7- 6- 5-	TROWALK: 8B)
7- 6- 5-	TROWALK: 8B)
7- 6- 5-	TROWALK: 8B)
7 - 6 - 5 - (\$p) wold	TROWALK: 8B)
7- 6- 5-	TROWALK: 8B)
7 - 6 - 5 - (\$p) wold	TROWALK: 8B)
7 6 5 (\$J) 4 3	TROWALK: 8B)
7 - 6 - 5 - (\$p) wold	TROWALK: 8B)
7 6 5 (\$J) 4 3	TROWALK: 8B)
7 6 5 (\$J) 4 3	TROWALK: 8B)
7 6 5 (\$J) 4 3	TROWALK: 8B)
7 6 5 (sp) 4 3 2 1	TROWALK: 8B)
7 6 5 (\$J) 4 3	

roject Name	METROWALK		
ubarea ID	10C		
rea (ac)	3.6		
Tow Path Length (ft)	854.0		
Flow Path Slope (vft/hft)	0.0187		
50-yr Rainfall Depth (in)	6.1		
Percent Impervious	0.8		
Soil Type	20		
Design Storm Frequency	50-yr		
Fire Factor	0		
LID	False		
Output Results			
•	6.1		
Modeled (50-yr) Rainfall Depth (in)	2.7609		
Peak Intensity (in/hr) Jndeveloped Runoff Coefficient (Cu)	0.5849		
Developed Runoff Coefficient (Cd)	0.837		
Fime of Concentration (min)	9.0		
Clear Peak Flow Rate (cfs)	8.3191		
Burned Peak Flow Rate (cfs)	8.3191		
24-Hr Clear Runoff Volume (ac-ft)	1.3677		
24-Hr Clear Runoff Volume (cu-ft)	59576.1834		
9 Hydrograph (MET	ROWALK: 10C)		
3	ROWALK: 10C)		
9 Hydrograph (MET 8-	ROWALK: 10C)		
3	ROWALK: 10C)		
8-	ROWALK: 10C)		
8- 7- 6-	ROWALK: 10C)		
8 7 6 (stp) wold 4	ROWALK: 10C)		
8 - 7 - 6 - (stj) Mol 4 - 3 -	ROWALK: 10C)		
8 - 7 - 6 - (stj) Mol 4 - 3 -	ROWALK: 10C)		
8 - 7 - 6 - (stj) Mol 4 - 3 -			

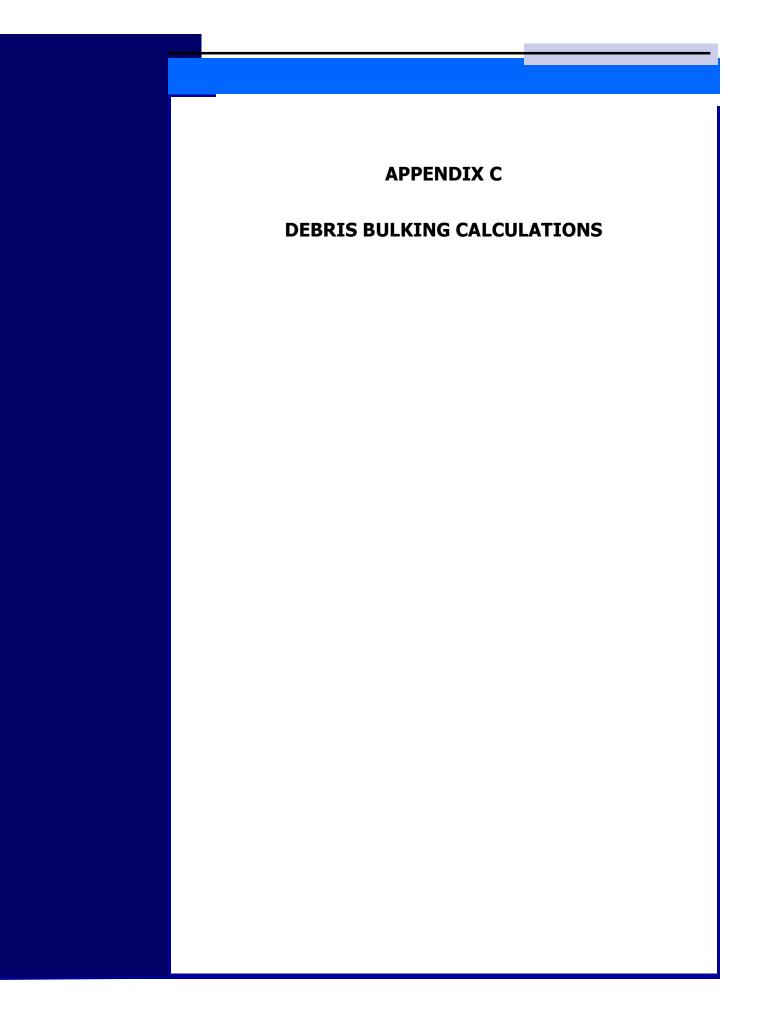
put Parameters		METROWALK		
ubarea ID		11C		
rea (ac)		1.0		
low Path Length (ft)	482.0		
low Path Slope (vft	/ /hft)	0.0145		
0-yr Rainfall Depth	(in)	6.1		
ercent Impervious	(11)	0.91		
oil Type		20		
esign Storm Frequ	ADOV	50-yr		
ire Factor	ency	0		
ID		False		
Output Results	ofall Danth (in)	6.4		
lodeled (50-yr) Rai		6.1		
eak Intensity (in/hr)	Coofficient (Cu)	3.3405		
Indeveloped Runofi eveloped Runoff C		0.6254		
ime of Concentration		0.8753		
ime of Concentration	bir (min)	6.0		
lear Peak Flow Ra urned Peak Flow R		2.9239		
unieu Peak Flow R		2.9239		
		0.4205		
4-Hr Clear Runoff \ 4-Hr Clear Runoff \	/olume (ac-ft) /olume (cu-ft)	0.4205 18318.9782		
4-Hr Clear Runoff \	/olume (ac-ft) /olume (cu-ft)			
4-Hr Clear Runoff \ 4-Hr Clear Runoff \	/olume (ac-ft) /olume (cu-ft) Hydrograph (MET	18318.9782	_	
4-Hr Clear Runoff \	/olume (cu-ft)	18318.9782	_	
4-Hr Clear Runoff \ 4-Hr Clear Runoff \	/olume (cu-ft)	18318.9782		
4-Hr Clear Runoff \ 4-Hr Clear Runoff \ 30	/olume (cu-ft)	18318.9782		
4-Hr Clear Runoff \ 4-Hr Clear Runoff \ 3.0	/olume (cu-ft)	18318.9782		
4-Hr Clear Runoff \ 4-Hr Clear Runoff \ 3.0 2.5 2.0	/olume (cu-ft)	18318.9782		
4-Hr Clear Runoff \ 4-Hr Clear Runoff \ 2.5 2.0 (s) 1.5 2.0	/olume (cu-ft)	18318.9782		

APPENDIX B HYDROLOGIC MODELING OUTPUT (LAR04 SOFTWARE)

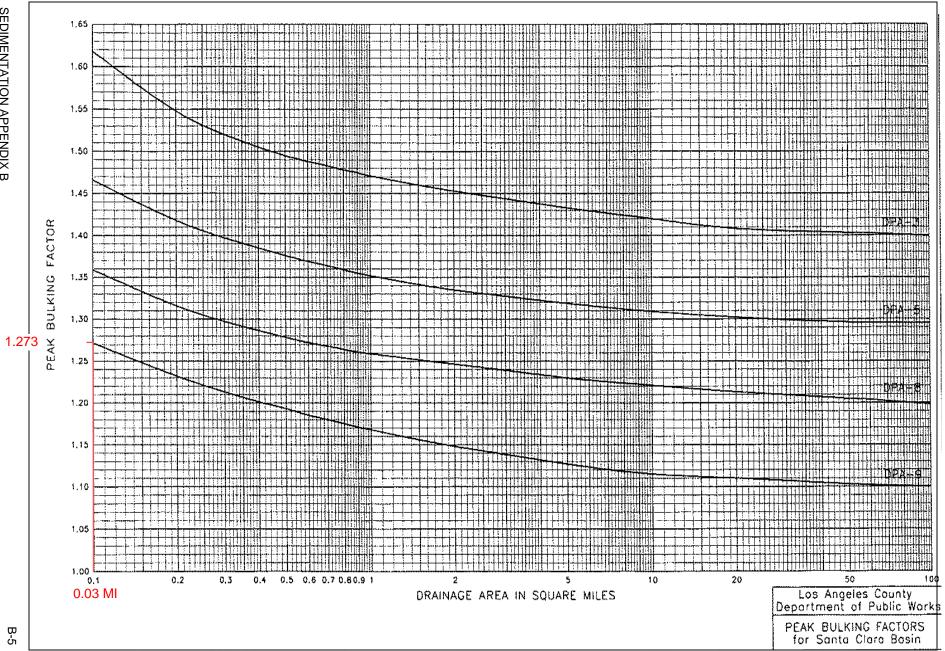
006	1934	1A 20 86 1.6 7A304347.3001730	0 G1	
006	1934	2A 20 86 2.6 6A304374.0001600	0	
006	1934	3A 20 82 3.0 8A304122.1000820	0	
006	1934	4A 20 88 2.0 8A304240.4000830	0	
006	1934	5A 20 68 5.511A304 77.7010290	0	
006	1934	6B 220 810.414A304 1.0001000	0	
006	1934	7B 220 8 2.1 8A304 1465001000	0	
006	1934	8B 220 8 5.614A304704.1000990	0	
006	1934	9AB220 0 .0 0A304128.0001310	0 1	
006	1934	10C 20 80 3.6 9A304662.1001810	0	
006	1934	11C 20 91 1.0 6A304438.5002050	0	
006	1934	12AC220 0 .0 0A304 1.0001000	021 2	

					LOS AN	IGELES CO	DUNTY	FLOOD CONT	ROL DIS	STRI CT			PROG	F06	01M	
	Versid	on 11.3	3, MODIFIED	RATI ONAL	METHOD HYD	ROLOGY	- STOF	RM YEAR = 5	50 SOLI	L DATA FIL	E: C: \o	civild∖sc	r_soi l	x_34	.dat	
	METRO\	NALK (CLOYD) - DE	V BASIN -	50YR BURN	UNDEV/50	DYR DE	VELOPED							STORM	DAY
			SUBÁREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL	S01 L		RAIN	PC
	LOCAT	I ON	AREA(Ac)	Q(CFS)	AREA(Ac)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS)	NAME	ТС	ZONE	I MI
	1934	1A	1.6	4.15	1.6	4.15	4	347.	. 01730	2.00	. 00	0.	20	7	A30	. 8
	1934	2A	2.6	7.28	4.2	11.24	4	374.	. 01600	2.00	. 00	0.	20	6	A30	
	1934	3A	3.0	7.19	7.2	18.03	4	122.	. 00820	2.00	. 00	0.	20	8	A30	. 1
	1934	4A	2.0	4.90	9.2	22.72	4	240.	. 00830	2.25	. 00	0.	20	8	A30	. :
	1934	5A	5.5	10.76	14.7	33.02	4	78.	. 10290	2.00	. 00	0.	20	11	A30	. (
	1934	6B	10.4	14.29	10.4	14.29	4	1.	. 01000	2.00	. 00	0.	220	14	A30	. (
	1934	7B	2.1	3.99	12.5	18.25	4	1465.	. 01000	2.00	. 00	0.	220	8	A30	. '
	1934	8B	5.6	7.70	18. 1	23.98	4	704.	. 00990	2.00	. 00	0.	220	14	A30	
* * * *	* * * * * * * *	* * * * * *	* * * * * * * * * * * *	33.02 193		B 1157		51.46 QA	32. 1		9. 27	* * * * * * * * *	* * * * * *	* * * *	*****	***
			SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL	SOI L		RAIN	PC
	LOCAT	I ON	AREA(Ac)	Q(CFS)	AREA(Ac)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS)	NAME	ТС	ZONE	IM
	1934	9AB	• •	23. 48	32.8	51.46			. 01310	• • •	. 00	0.	220	0	A30	. (
	1934	10C	3.6	8.14	3.6	8.14	4	662.	. 01810	2.00	. 00	0.	20	9	A30	
	1934	11C	1.0	2.84	4.6	10.34					. 00	0.	20	6	A30	. '
* * *	* * * * * * * *	* * * * * *	* * * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *			IENCE Q'S	*****	* * * * * * * * * *	* * * * * * :	* * * * * * * * *	*****	* * * *	*****	***
*	1934	12A	TA 1157 QA	51.25	QAC 61.		10. 0		12C	TC 1156 Q	C 10	D. 19 QCA	60.	28 C	2A 5	50.0
*				193		C 1157 (61.34 QA	51.2	25 QC 1	0.09					
***	* * * * * * * *	* * * * * *	* * * * * * * * * * *		* * * * * * * * * * *							* * * * * * * * *	* * * * * *	* * * *	* * * * * *	:***
			SUBAREA	SUBAREA	TOTAL	TOTAL		CONV	CONV	CONV	CONV	CONTROL			RAIN	
	LOCAT	I ON	AREA(Ac)	Q(CFS)	AREA(Ac)	O(CES)	TYPF	INGTH(F†)	SLOPE	SIZE(Ft)	Z	Q(CFS)	NAME	TC	ZONE	IM
		12AC	• •	10.19	///////////////////////////////////////	61.34			. 01000		. 00	• •	220	0	A30	I IVII

Program Package Serial Number: 2229 07/08/20 FILE: 1934DA INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M 1


Program Package Serial Number: 2229
 07/08/20 FILE: 1934DA INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 2

PROG F0601M


LOS ANGELES COUNTY FLOOD CONTROL DISTRICT

Version 11.3,	MODIFIE									
	HYDROG	METR RAPH AT		CLOYD) - 12A		N – 50YR B RM DAY 4	URN UND	EV/50YR DEV REDUCTION		= 1.000
	TIME	Q	TIME	Q	TIME	Q	TIME	Q	TIME	Q
	0	. 00	100	2.49		2.58	300	2.72	400	2.87
	500	3.06	600	3.29		3.59	800	3.97	900	4.55
	1000	5.52	1050	7.05		9.45	1110	11.15	1120	13.45
	1130	15.93	1131	16. 24	1132	16.52	1133	16.81	1134	17.13
	1135	17.48	1136	17.86	1137	18.28	1138	18.79	1139	19.34
	1140	19. 92	1141	20.55	1142	21.25	1143	22.02	1144	22.81
	1145	23.72	1146	24.82		26.06	1148	27.42	1149	29.44
	1150	32.65	1151	36.89		42.08	1153	47.88	1154	53.29
	1155	57.56	1156	60.28		61.34	1158	60.74	1159	58.76
	1160	55.46	1161	51.21		46.94	1163	42.93	1164	39.24
	1165	35.96	1166	33.07		30.25	1168	27.55	1169	25.02
	1170	22.76	1171	20.75		18.95	1173	17.36	1174	15.97
	1175 1180	14. 80 11. 12	1176 1181	13.80 10.64		12. 98 10. 23	1178 1183	12.26 9.86	1179 1184	11.64 9.52
	1180	9.23	1186	8.98		8.74	1188	9.00 8.52	1184	9.32 8.32
	1190	9.23 8.13	1191	7.95		7.79	1193	7.62	1194	0.32 7.47
	1195	7.34	1196	7.19		7.06	1198	6.94	1199	6.83
	1200	6.72	1201	6.62		6.50	1203	6.40	1204	6.29
	1205	6.19	1206	6. 11		6.03	1208	5.96	1209	5.89
	1210	5.84	1211	5.77		5.72	1213	5.66	1214	5.60
	1215	5.54	1216	5.47	1217	5.41	1218	5.35	1219	5.29
	1220	5.23	1221	5.18	1222	5.13	1223	5.08	1224	5.04
	1225	5.01	1226	4.97		4.94	1228	4.89	1229	4.85
	1230	4.82	1231	4.80		4.77	1233	4.74	1234	4.72
	1235	4.69	1236	4.66		4.63	1238	4.60	1239	4.56
	1240	4.53	1241	4.48		4.44	1243	4.41	1244	4.39
	1245	4.36	1246	4.34		4.33	1248	4.32	1249	4.30
	1250	4.28	1251	4.25		4.22	1253	4.20	1254	4.18
	1255 1260	4. 16 4. 07	1256 1261	4.14 4.05		4.11 4.03	1258 1263	4.09 4.02	1259 1264	4.08 3.99
	1260	4.07	1261	4.05		4.03	1263	4.02 3.91	1264	3.99
	1205	3. 97	1200	3.93		3. 93	1208	3. 91	1209	3.80
	1275	3. 79	1276	3.78		3.76	1278	3.75	1279	3.73
	1275	3.73	1281	3.70		3.69	1283	3.67	1284	3.65
	1285	3.65	1286	3.64		3.62	1288	3.60	1289	3.58
	1290	3.57	1291	3.56		3.55	1293	3.55	1294	3.54
	1295	3. 52	1296	3.50		3.49	1298	3.48	1299	3.47
	1300	3.45	1310	3.34		3.27	1330	3.15	1340	3.05
	1350	2.99	1360	2.93		2.83	1380	2.77	1390	2.76
	1400	2.70	1420	2.57	1440	2.50	1460	2.49	1500	2.49

TOTAL VOLUME THIS HYDROGRAPH = 9.54(Ac.Ft)

DEVELOPED CONDITION - 50-YR, BURNED AND BULKED FLOWRATE

DPA	Draina	ge Area	Develop	oed Area
	ас	sq mi	ас	sq mi
9	10.40	0.02	0.83	0.00
Total	10.40	0.02	0.83	0.00

BASIN A - SUBAREA 6B

Peak Bulking Factor

DPA Zone 9 Total1.273DPA Zone 9 - Dev1.273

Qb =	14.29	cfs
BF1 TOT =	1.27	
BF1-DEV =	1.27	
A1 =	0.02	sq mi
Ad1 =	0.00	sq mi

LACDPW - Sedimentation Manual

Equation 3.4.3: For Partially Developed Watershed in Multiple DPA Zones

Term 1 =	15.40	cfs
Term 2 =	2.48	cfs
Term 3 =	0.00	cfs
Term 4 =	0.00	cfs

QBB = 17.88 cfs

DEVELOPED CONDITION - 50-YR, BURNED AND BULKED FLOWRATE

DPA	Draina	ge Area	Develop	oed Area
	ac	sq mi	ac	sq mi
9	2.10	0.00	0.57	0.00
Total	2.10	0.00	0.57	0.00

BASIN A - SUBAREA 7B

Peak Bulking Factor

DPA Zone 9 Total1.273DPA Zone 9 - Dev1.273

Qb =	3.99	cfs
BF1 TOT =	1.27	
BF1-DEV =	1.27	
A1 =	0.00	sq mi
Ad1 =	0.00	sq mi

LACDPW - Sedimentation Manual

Equation 3.4.3: For Partially Developed Watershed in Multiple DPA Zones

Term 1 =	2.70	cfs
Term 2 =	2.09	cfs
Term 3 =	0.00	cfs
Term 4 =	0.00	cfs

QBB =	4.78	cfs

DEVELOPED CONDITION - 50-YR, BURNED AND BULKED FLOWRATE

DPA	Draina	ge Area	Developed Area		
	ac sq mi		ас	sq mi	
9	5.60	0.01	0.76	0.00	
Total	5.60	0.01	0.76	0.00	

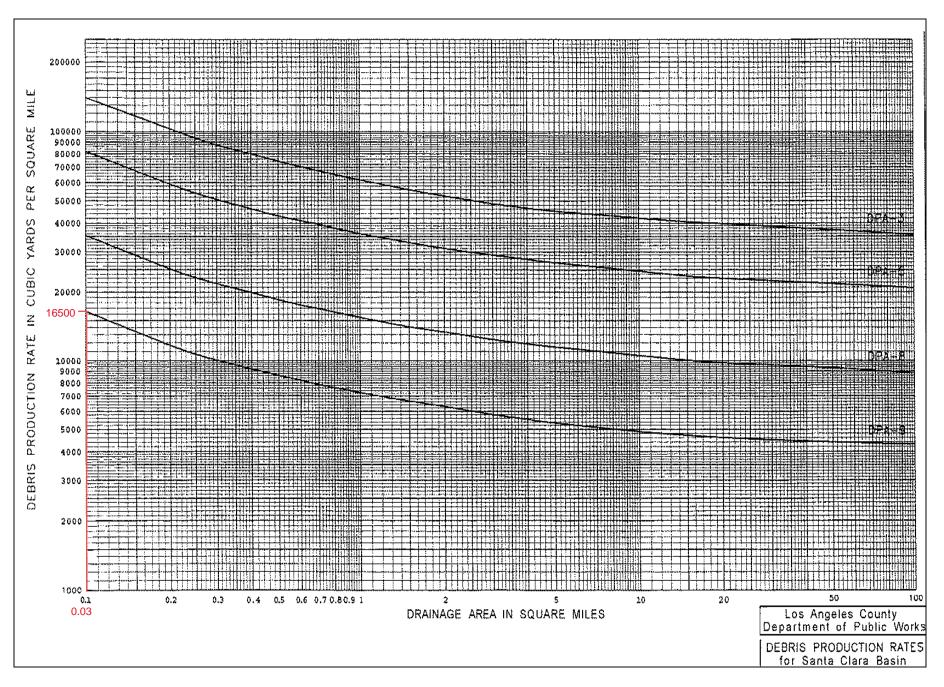
BASIN A - SUBAREA 8B

Peak Bulking Factor

DPA Zone 9 Total1.273DPA Zone 9 - Dev1.273

Qb =	7.70	cfs
BF1 TOT =	1.27	
BF1-DEV =	1.27	
A1 =	0.01	sq mi
Ad1 =	0.00	sq mi

LACDPW - Sedimentation Manual


Equation 3.4.3: For Partially Developed Watershed in Multiple DPA Zones

Term 1 =	7.32	cfs
Term 2 =	2.19	cfs
Term 3 =	0.00	cfs
Term 4 =	0.00	cfs

QBB =	9.52	cfs

	SURFACE AREA ac-ft sq mi		DEBRIS PRODUCTION RATE	DEBRIS PRODUCED (VOL_REQ)	DEBRIS BASIN SIZE (VOL_PROV)
			cy / sq mi	су	СУ
DEBRIS BASIN 1	12.5	0.020	16500	330	355
DEBRIS BASIN 2	5.6	0.0088	16500	145	163
TOTAL		0.03	16500	495	518

APPENDIX D

VISTA CANYON HYDROLOGY REPORT

and the second second	
We then the second	
The second second	
	BULK HYDROLOGY
	REPORT
	County of Los Angeles
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
A Company of the second se	VISTA CANYON TR 069164
HYDROLOGY STUD APPROVED BY CITY OF Santa Cla	Y
APPROVED BY AND RCE NO (85	Job No. 0560
HYDROLOGY STUD	Y
CITY OF Santa Clarita RECOMMENDED FOR CITY A	PPROVAL
CHECKED BY	2_DATE 10/8/2015
APPROVED BY: Nim M	DATE 10/8/2015
COUNTY OF LOS ANGELES DEPARTMENT OF F LAND DEVELOPMENT DIVISION	
and the second	County of Los Angeles,
	Department of Public Works
	Prepared By:
	Alliance Land Planning & Engineering, Inc.
and the second second	2248 Faraday Ave. Carlsbad, CA 92008
The residue of the	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	AUGUST 2015
and the second	

Table of Contents

Overview	1
Bulk Condition Drainage	1
Methodology	1
Results	2
Conclusion	3

Appendices

APPENDIX A	'Bulk Condition Hydrology' Exhibit
APPENDIX B	Time of Concentration (HydroCalc)
APPENDIX C	Hydrologic Model Output (LAR04)

Overview

This study is intended to summarize project flowrates during the rough grading or 'bulk grading' phase of the Vista Canyon Ranch Project (TM 69164) located in Santa Clarita, CA. Peak runoff flowrates for the 50- and 25-year events have been analyzed using methods prescribed in the LA County Hydrology Manual. The 'Bulk Condition Hydrology' Exhibit located in Appendix A of this report can be referenced to illustrate this analysis.

Bulk Condition Drainage

During the bulk grading phase, the project site will consist of 4 main drainage basins. Three basins are located behind the south bank and one basin is located behind the north bank. All basins outlet directly into the Santa Clara River. Soil cement bank protection along both north and south river banks will be constructed prior to any bulk grading sitework. Offsite tributary flows taken from the approved developed condition hydrology report have been included at appropriate locations at each of the four respective drainage basins.

To the south, Basin A will outlet via the proposed 48" RCP of Line 'A' per the stormdrain plans currently in process at LACDPW, Basin B will outlet via the 42" RCP of Line 'C', and Basin C will outlet via the 8'Wx4'H RCB of Line 'F'. To the north, Basin D will outlet via the proposed 24" RCP of Line 'G'.

All stormdrain lines are equipped with desilting basins upstream of the pipe inlet. Runoff must pond and flow into a standpipe system within each desilting basin before reaching the storm drain inlet for conveyance out to the River. Basin C will convey runoff only after the borrow pit completely fills and overflow reaches the inlet of the box culvert at Line 'F'. The peak flow attenuating effects of these desilting basins has not been considered in this anaylsis.

Only the proposed stormdrain inlets mentioned above will convey flow. Several laterals will be constructed with brick and mortar plugs until full site build-out occurs. The plugged laterals will not convey flow during this bulk grading phase.

Offsite flows have been taken directly from the approved Drainage Concept/Hydrology Report for TR 69164. The 50-yr burned only flowrate has been used as the onsite desilting basins will debulk flows prior to entering any stormdrain lines.

Methodology

Hydrologic modeling was performed to analyze a bulk (interim) condition runoff during the construction phase of the project. LAR04 and Flowmaster software have been used for this analysis.

The following hydrologic parameters and software have been used during the hydrologic step of this analysis:

- Storm Event
- 50-year, 24-hour Rainfall Depth
- Soil Classification Area
- Time of concentration
- Flow rates and volumes

= 50-yr, 25-yr = 5.8" = 020 = HydroCalc software

= LAR04 software

The Table 1 below presents a summary of the hydrologic basin parameters for the 25and 50-year events.

Basin	Component	Area		Flow Path Slope	IMP	Soil Type	50-YR Rainfall	25YR Tc	50YR Tc	
		SF	AC	FT	FT/FT	%		IN	MIN	MIN
А	2A	1,596,450	36.6	2,343	0.0201	10	20	5.8	29	24
В	1B	1,392,695	32.0	1,690	0.0077	10	20	5.8	27	23
Б	2В	602,438	13.8	335	0.0173	10	20	5.8	7	6
с	1C	1,048,853	24.1	890	0.0171	10	20	5.8	14	12
C	2C	1,514,582	34.8	1,680	0.0315	10	20	5.8	20	17
D	1D	733,727	16.8	2,640	0.0212	25	20	5.8	28	24
D	2D	216,309	5.0	1,274	0.017	25	20	5.8	17	15
TOTAL			163.1							

Hydrologic Parameter Summary

Results

The Table 2 below summarizes hydrologic results at the outlet of each major drainage basin:

SUMMARY OF FLOWS

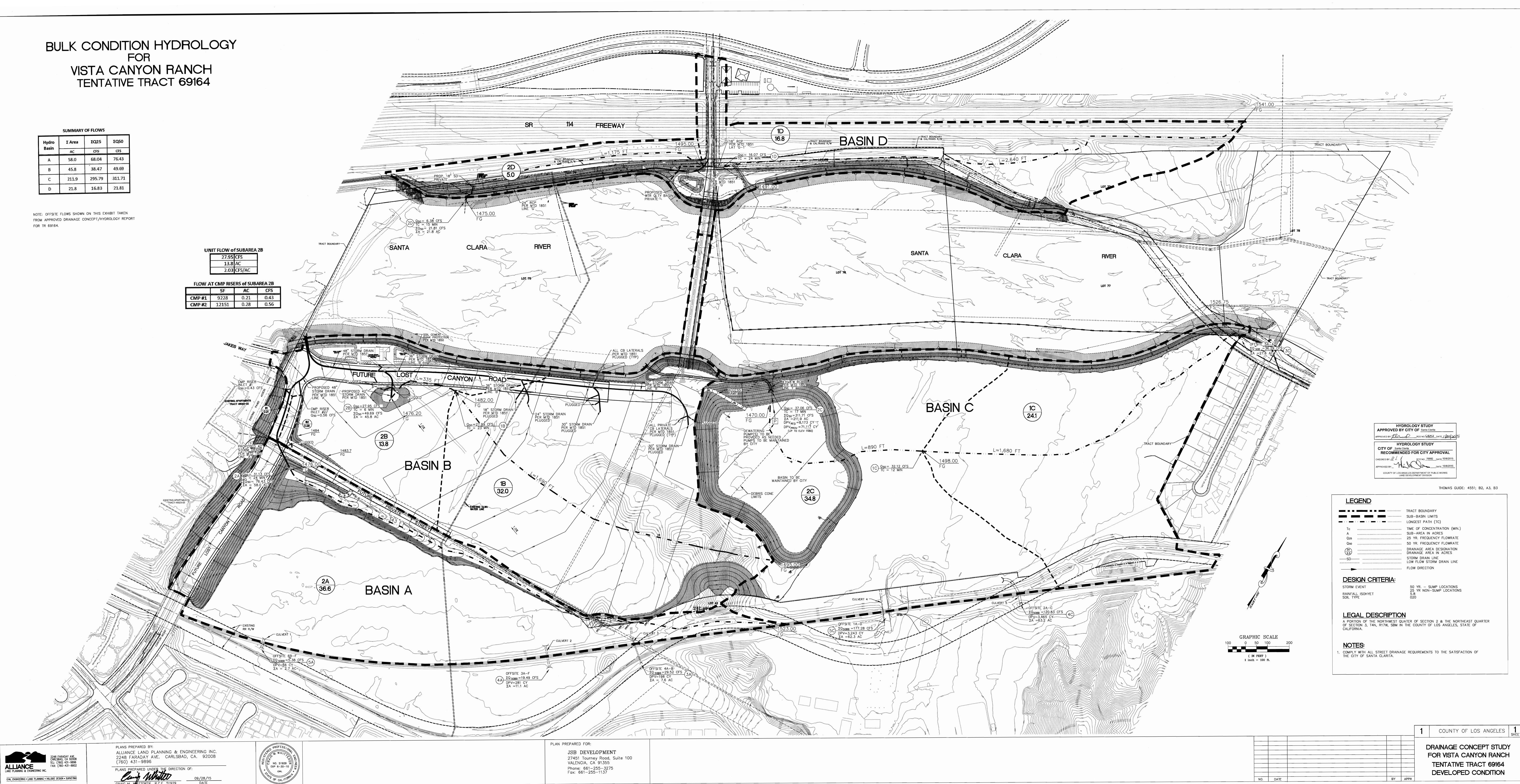
Hydro Basin	Σ Area	ΣQ25	ΣQ50	
Dasin	AC	CFS	CFS	
А	58.0	68.04	76.43	
В	45.8	38.47	49.69	
С	211.9	295.79	311.71	
D	21.8	16.83	21.81	

Table 3 below summarizes flows at the outlet of each onsite sub-area and at each offsite point of run-on:

Hydro	Sub-Area	Area	Q25	ΣQ25	Q50	ΣQ50
Basin	Sub-Area	AC	CFS	CFS	CFS	CFS
	2A	36.6	22.74	22.74	31.13	31.13
	3A (OFFSITE 4A)	7.6	21.00		21.00	
Α	4A (OFFSITE 3A)	11.1	19.49		19.49	
	5A (OFFSITE 6B)	2.7	4.81		4.81	
	TOTAL A	58.0		68.04		76.43
	1B	32.0	20.86		27.99	
В	2B	13.8	21.47	38.47	27.95	49.69
	TOTAL B	45.8		38.47		49.69
	1C	24.1	24.33		32.12	
	2C	34.8	27.80	49.37	37.06	65.29
	3C (OFFSITE 5A)	27.6	36.29		36.29	
С	4C (OFFSITE 2A)	62.3	82.13		82.13	
	5C (OFFSITE 1A)	63.2	128.00		128.00	
	TOTAL C	211.9		295.79		311.71
D	1D	16.8	12.32		16.07	
	2D	5.0	4.98	16.83	6.38	21.81
	TOTAL D	21.8		16.83		21.81

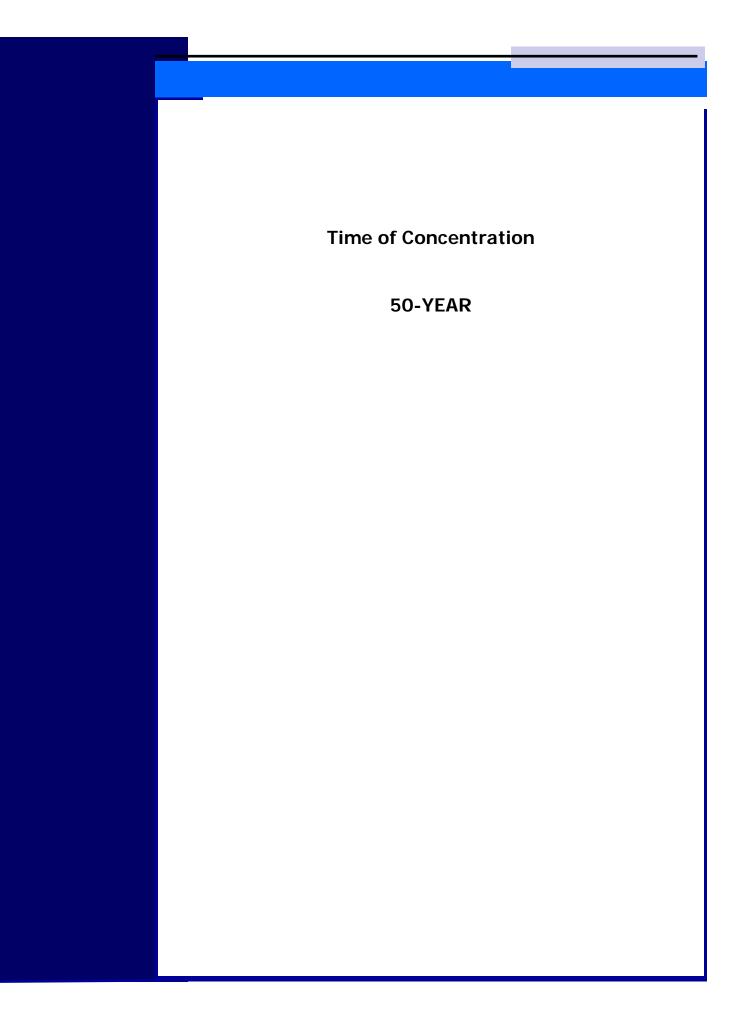
Detailed Summary of Flows

Conclusion


Interim condition flowrates are summarized above. The greater of flowrates as taken from the developed condition hydrology and these interim flowrates should be used to size all storm drain lines for this project. This analysis does not consider attenuation of peak flows due to the desilting basin upstream of each inlet.

Appendix A

'Bulk Condition Hydrology' Exhibit


Hydro	Σ Area	ΣQ25	ΣQ50
Basin	AC	CFS	CFS
A	58.0	68.04	76.43
В	45.8	38.47	49.69
ć	211.9	295.79	311.71
D	21.8	16.83	21.81

I:/CAD/0560/BULK HYDROLOGY/BULK HYDROLOGY-SHT1.dwg

Appendix B

Time of Concentration (HydroCalc Output)

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/50YR/0560-BASIN 2A_081315.pdf Version: HydroCalc 0.3.0-beta

Project Name		Vista Canyon - B	ulk Hydrology
Subarea ID		Basin 2A	antifutorogy
rea (ac)		36.6	
low Path Length (ft)		2343.0	
low Path Slope (vft/hft)	0.0201	
0-yr Rainfall Depth (in)		5.8	
Percent Impervious		0.1	
		20	
esign Storm Frequence	V	50-yr	
ire Factor	, ,	0	
ID		False	
Output Results			
lodeled (50-yr) Rainfal	l Depth (in)	5.8	
Peak Intensity (in/hr)		1.6556	
Indeveloped Runoff Co	pefficient (Cu)	0.4677	
eveloped Runoff Coef	ficient (Cd)	0.5109	
ime of Concentration (min)	24.0	
lear Peak Flow Rate (cfs)	30.9588	
Surned Peak Flow Rate	(cfs)	30.9588	
	uma (aa ft)		
4-Hr Clear Runoff Volu		4.1142	
4-Hr Clear Runoff Volu	ıme (cu-ft)	179216.603	
4-Hr Clear Runoff Volu	ıme (cu-ft)		
4-Hr Clear Runoff Volu	ıme (cu-ft)	179216.603	
4-Hr Clear Runoff Volu	ıme (cu-ft)	179216.603	-
4-Hr Clear Runoff Volu 35 Hydr 30 - 25 -	ıme (cu-ft)	179216.603	
4-Hr Clear Runoff Volu 35 Hydr 30 - 25 -	ıme (cu-ft)	179216.603	
4-Hr Clear Runoff Volu 35 Hydr 30 - 25 -	ıme (cu-ft)	179216.603	
4-Hr Clear Runoff Volu 35 Hydr 30 - 25 - (§) 20 - (§) 20 - (§) 15 -	ıme (cu-ft)	179216.603	
4-Hr Clear Runoff Volu 35 Hydr 30 - 25 - 30 - 25 - 30 -	ıme (cu-ft)	179216.603	
4-Hr Clear Runoff Volu 35 Hydr 30 - 25 - (§) 20 - (§) 20 - (§) 15 -	ıme (cu-ft)	179216.603	

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/50YR/0560-BASIN 1B_081315.pdf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology
Subarea ID	Basin 1B
Area (ac)	32.0
Flow Path Length (ft)	1690.0
Flow Path Slope (vft/hft)	0.0077
50-yr Rainfall Depth (in)	5.8
Percent Impervious	0.1
Soil Type	20
Design Storm Frequency	50-yr
Fire Factor	0
.ID	False
Dutput Results	
Modeled (50-yr) Rainfall Depth (in)	5.8
Peak Intensity (in/hr)	1.689
Indeveloped Runoff Coefficient (Cu)	0.4724
Developed Runoff Coefficient (Cd)	0.5152
Time of Concentration (min)	23.0
Clear Peak Flow Rate (cfs)	27.8433 27.8433
Burned Peak Flow Rate (cfs) 24-Hr Clear Runoff Volume (ac-ft)	3.5999
24-Hi Clear Runoff Volume (ac-it)	
	156812.4921
	anyon - Bulk Hydrology: Basin 1B)
Hydrograph (Vista C	
30 Hydrograph (Vista C	
30 Hydrograph (Vista C 25 20	
30 Hydrograph (Vista C	
30 Hydrograph (Vista C 25 20	
30 Hydrograph (Vista C 25 20 (st) wold 15	
30 Hydrograph (Vista C 25 20 (st) mol 15 10	

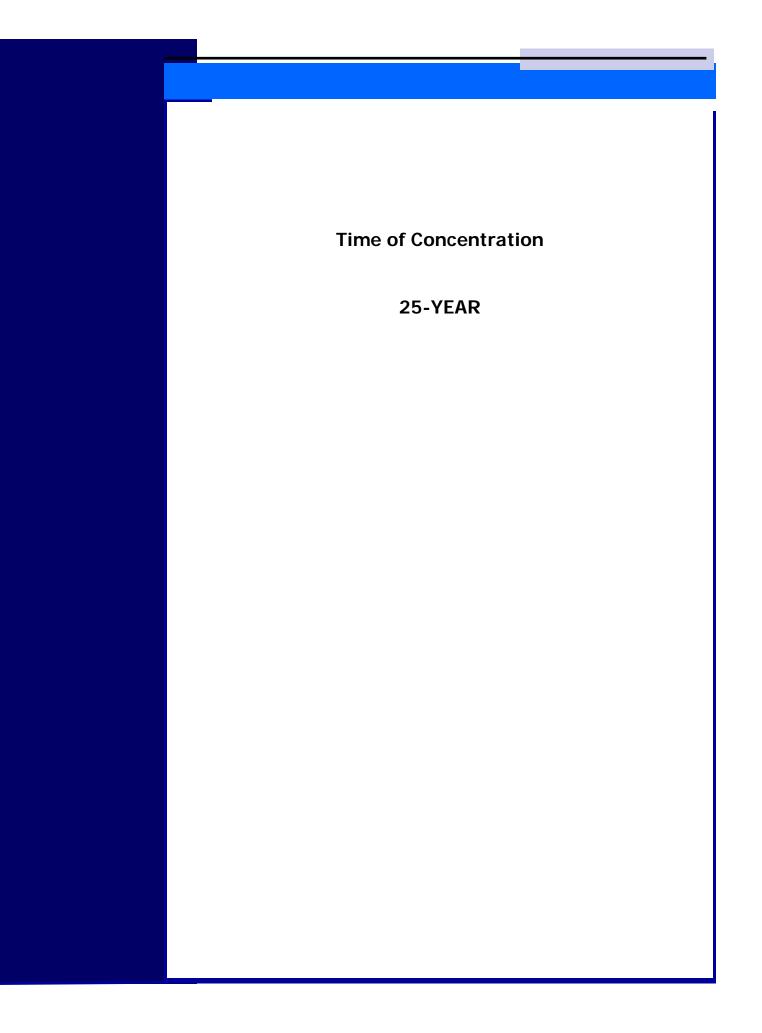
File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/50YR/0560-BASIN 2B_081315.pdf Version: HydroCalc 0.3.0-beta

Project Name	9	Vista Canyon - Bulk Hydrology
Subarea ID		Basin 2B
Area (ac)		13.8
Flow Èath Le	ngth (ft)	335.0
Flow Path Sl	ope (vft/hft)	0.0173
50-yr Rainfal	l Depth (in)	5.8
Percent Impe	ervious	0.1
Soil Type		20
Design Storn	n Frequency	50-yr
Fire Factor		0
_ID		False
Output Resi	ilts	
	yr) Rainfall Depth (in)	5.8
Peak Intensit	v (in/hr)	3.1763
Jndeveloper	Runoff Coefficient (Cu)	0.6163
Developed R	unoff Coefficient (Cd)	0.6447
Time of Cond	centration (min)	6.0
Clear Peak F	low Rate (cfs)	28.2587
Burned Peak	Flow Rate (cfs)	28.2587
24-Hr Clear F	Runoff Volume (ac-ft)	1.5771
	Dunoff \/aluma (au ft)	00000 5000
	Runoff Volume (cu-ft)	68696.5082
	Hydrograph (Vista Canyon -	
1.2.40		
30		
30 25		
30 25 20		
30 25 20 (stj) Mol 15 10		
30 25 20 15		

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/50YR/0560-BASIN 1C_081315.pcf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology
Project Name Subarea ID	Basin 1C
Area (ac)	24.1
Flow Path Length (ft)	890.0
Flow Path Slope (vft/hft)	0.0171
50-yr Rainfall Depth (in)	5.8
Percent Impervious	0.1
Soil Type	20
Design Storm Frequency	50-yr
Fire Factor	0
ID	False
Dutput Results	
Nodeled (50-yr) Rainfall Depth (in)	5.8
Peak Intensity (in/hr)	2.2931
Indeveloped Runoff Coefficient (Cu)	0.5426
Developed Runoff Coefficient (Cd)	0.5784
ime of Concentration (min)	12.0
Clear Peak Flow Rate (cfs)	31.9626
Burned Peak Flow Rate (cfs)	31.9626
24-Hr Clear Runoff Volume (ac-ft) 24-Hr Clear Runoff Volume (cu-ft)	2.7369 119220.1944
35 Hydrograph (Vista Canyo	on - Bulk Hydrology: Basin 1C)
35 Hydrograph (Vista Canyo 30 -	on - Bulk Hydrology: Basin 1C)
33	on - Bulk Hydrology: Basin 1C)
33	on - Bulk Hydrology: Basin 1C)
30 - 25 -	on - Bulk Hydrology: Basin 1C)
30 - 25 -	on - Bulk Hydrology: Basin 1C)
30 - 25 -	on - Bulk Hydrology: Basin 1C)
30 30 25 (sj:) 8	on - Bulk Hydrology: Basin 1C)
30 30 25 (st) NO L 15 10	on - Bulk Hydrology: Basin 1C)
30 30 25 (stj) 80 15	on - Bulk Hydrology: Basin 1C)

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/50YR/0560-BASIN 2C_081315.pcf Version: HydroCalc 0.3.0-beta


Project Name Subarea ID Area (ac) Flow Path Length (ft) Flow Path Slope (vft/hft) 60-yr Rainfall Depth (in)	Vista Canyon - Bulk Hydrology Basin 2C 34.8
low Path Length (ft) low Path Slope (vft/hft)	34.8
low Path Slope (vft/hft)	
low Path Slope (vft/hft) 0-vr Rainfall Depth (in)	1680.0
0-vr Rainfall Depth (in)	0.0315
	5.8
Percent Impervious	0.1
	20
Design Storm Frequency	50-yr 0
ID	False
output Results	
lodeled (50-yr) Rainfall Depth (in)	5.8
Peak Intensity (in/hr)	1.9469
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	0.5086
Developed Runoff Coefficient (Cd)	0.5478
ime of Concentration (min)	17.0
Clear Peak Flow Rate (cfs)	37.1114
Burned Peak Flow Rate (cfs)	37.1114
4-Hr Clear Runoff Volume (ac-ft) 4-Hr Clear Runoff Volume (cu-ft)	3.9357 171439.4917
40 Hydrograph (Vista Canyon -	Bulk Hydrology: Basin 2C)
35 -	
30	
25	
30	
2 20	
20 (cts)	
15	
10	1
10 -	
5-	
0 200 400 600 800	0 1000 1200 1400 1600

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/50YR/0560-BASIN 2D_081415.pdf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology
Subarea ID	Basin 1D
Area (ac)	16.8
Flow Path Length (ft)	2640.0
Flow Path Slope (vft/hft)	0.0212
50-yr Rainfall Depth (in)	5.8
Percent Impervious	0.25
Soil Type	20
Design Storm Frequency	50-yr
Fire Factor	0
LID	False
Output Results	
Modeled (50-yr) Rainfall Depth (in)	5.8
Peak Intensity (in/hr)	1.6556
Undeveloped Runoff Coefficient (Cu)	0.4677 0.5758
Developed Runoff Coefficient (Cd)	24.0
Clear Peak Flow Rate (cfs)	16.0142
Burned Peak Flow Rate (cfs)	16.0142
24-Hr Clear Runoff Volume (ac-ft)	2.7817
24-Hr Clear Runoff Volume (cu-ft)	121170.7841
18 Hydrograph (Vista 0	Canyon - Bulk Hydrology: Basin 1D)
18 Hydrograph (Vista (16	Canyon - Bulk Hydrology: Basin 1D)
10	Canyon - Bulk Hydrology: Basin 1D)
16 - 14 -	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12 (\$10 - (\$10 - 30 - 8	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12 (\$10 - (\$10 - 30 - 8	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 12 (\$10 - (\$10 - - - - - - - - - - - - -	Canyon - Bulk Hydrology: Basin 1D)
16 16 14 14 12 (\$10 - (\$10 - - - - - - - - - - - - -	Canyon - Bulk Hydrology: Basin 1D)

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/50YR/0560-BASIN 3D_081415.pdf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology
Subarea ID	Basin 2D
Area (ac)	5.0
Flow Path Length (ft)	1274.0
low Path Slope (vft/hft)	0.017
0-yr Rainfall Depth (in)	5.8
Percent Impervious	0.25
	20
Design Storm Frequency	50-yr
ID	0 False
	1 0130
Dutput Results	
Modeled (50-yr) Rainfall Depth (in)	5.8
Peak Intensity (in/hr) Jndeveloped Runoff Coefficient (Cu)	2.0648
Undeveloped Runoff Coefficient (Cu)) 0.522
Developed Runoff Coefficient (Cd) (0.6165 15.0
Clear Peak Flow Rate (cfs)	6.3645
Burned Peak Flow Rate (cfs)	6.3645
24-Hr Clear Runoff Volume (ac-ft)	0.8316
24-Hr Clear Runoff Volume (cu-ft)	36226.4396
Hvdrograph (Vista	Canvon - Bulk Hydrology: Basin 2D)
í	Canyon - Bulk Hydrology: Basin 2D)
7 Hydrograph (Vista 6	Canyon - Bulk Hydrology: Basin 2D)
í	Canyon - Bulk Hydrology: Basin 2D)
5	Canyon - Bulk Hydrology: Basin 2D)
5	Canyon - Bulk Hydrology: Basin 2D)
5	Canyon - Bulk Hydrology: Basin 2D)
6-	Canyon - Bulk Hydrology: Basin 2D)
5	Canyon - Bulk Hydrology: Basin 2D)
5	Canyon - Bulk Hydrology: Basin 2D)
6 - 5 - 4 - 3	Canyon - Bulk Hydrology: Basin 2D)
6 - 5 - 4 - 3	Canyon - Bulk Hydrology: Basin 2D)
6 - 5 - 4 - 3	Canyon - Bulk Hydrology: Basin 2D)
6 - 5 - 4 - 3	Canyon - Bulk Hydrology: Basin 2D)
6 - 5 - 4 - 3	Canyon - Bulk Hydrology: Basin 2D)

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/25YR/0560-BASIN 2A_081315.pdf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology
Project Name Subarea ID	Basin 2A
Area (ac)	36.6
Flow Path Length (ft)	2343.0
Flow Path Slope (vft/hft)	0.0201
50-yr Rainfall Depth (in)	5.8
Percent Impervious	0.1
Soil Type	20
Design Storm Frequency	25-yr
Fire Factor	0
ID	False
Dutput Results	
lodeled (25-yr) Rainfall Depth (in)	5.0924
Peak Intensity (in/hr)	1.3299
Jndeveloped Runoff Coefficient (Cu)	0.4116
Developed Runoff Coefficient (Cd)	0.4604
Time of Concentration (min)	29.0
Clear Peak Flow Rate (cfs)	22.4094
Burned Peak Flow Rate (cfs)	22.4094 3.4611
24-Hr Clear Runoff Volume (ac-ft) 24-Hr Clear Runoff Volume (cu-ft)	150766.6638
25 Hydrograph (Vista C	Canyon - Bulk Hydrology: Basin 2A)
25 Hydrograph (Vista C	
20 -	
20 -	
20 -	
20 -	
20 -	
20 - 15 - (\$5) M0	
20 - 15 - (\$5) M0	
20 - 15 - (stj) moli 10 -	
20 - 15 - (\$5) M0	
20 - 15 - (stj) moli 10 -	
20 - 15 - (stj) moli 10 -	
20 - 15 - (stj) moli 10 -	

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/25YR/0560-BASIN 1B_081315.pdf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology
Subarea ID	Basin 1B
Area (ac)	32.0
Flow Path Length (ft)	1690.0
Tow Path Slope (vft/hft)	0.0077
i0-yr Rainfall Depth (in)	5.8
Percent Impervious	0.1
Soil Type	20
Design Storm Frequency	25-yr
Fire Factor	0
ID	False
Output Results	
-	E 0024
Aodeled (25-yr) Rainfall Depth (in)	5.0924 1.3753
Peak Intensity (in/hr)	0.4207
Indeveloped Runoff Coefficient (Cu)	0.4686
Developed Runoff Coefficient (Cd)	27.0
Clear Peak Flow Rate (cfs)	20.6246
Burned Peak Flow Rate (cfs)	20.6246
24-Hr Clear Runoff Volume (ac-ft)	3.0317
24-Hr Clear Runoff Volume (cu-ft)	132061.6345
Hydrograph (Vista Canyon	132061.6345
25 Hydrograph (Vista Canyon	132061.6345
25 Hydrograph (Vista Canyon 20	132061.6345
25 Hydrograph (Vista Canyon 20 15	132061.6345
25 Hydrograph (Vista Canyon 20 15 (sj) moli 10	132061.6345
25 Hydrograph (Vista Canyon 20 15	132061.6345
25 Hydrograph (Vista Canyon 20 15 (sj) moli 10	132061.6345
25 Hydrograph (Vista Canyon 20 15 (sj) woli 10	132061.6345
Hydrograph (Vista Canyon 20 15 (st) mol 10 5	132061.6345

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/25YR/0560-BASIN 2B_081315.pdf Version: HydroCalc 0.3.0-beta

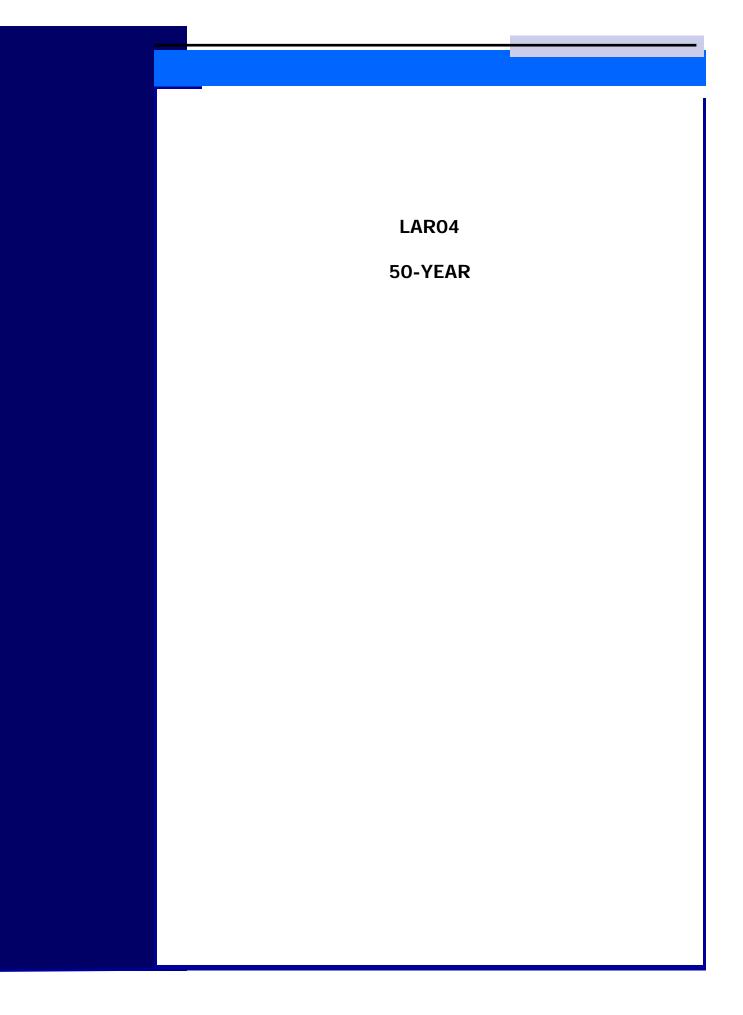
Project Name	Vista Canyon - Bulk Hydrology
Subarea ID	Basin 2B
vrea (ac)	13.8
low Path Length (ft)	335.0
low Path Slope (vft/hft)	0.0173
0-yr Rainfall Depth (in)	5.8
Percent Impervious	0.1
Soil Type	20
Design Storm Frequency	25-yr
ire Factor	0
ID	False
Output Results	
lodeled (25-yr) Rainfall Depth (in)	5.0924
Peak Intensity (in/hr)	2.5939
Indeveloped Runoff Coefficient (Cu)	0.5698
Developed Runoff Coefficient (Cd)	0.6028
ime of Concentration (min)	7.0
Clear Peak Flow Rate (cfs)	21.5787
Burned Peak Flow Rate (cfs)	21.5787
4-Hr Clear Runoff Volume (ac-ft) 4-Hr Clear Runoff Volume (cu-ft)	1.3338
	58098.2699
	58098.2699 von - Bulk Hydrology: Basin 2B)
Hydrograph (Vista Cany	
Hydrograph (Vista Cany	
25 Hydrograph (Vista Cany	
25 Hydrograph (Vista Cany 20 -	
25 Hydrograph (Vista Cany 20 15	
25 Hydrograph (Vista Cany 20 15	
25 Hydrograph (Vista Cany 20 15	
25 Hydrograph (Vista Cany 20 15 (st) wo	
25 Hydrograph (Vista Cany 20 15	
25 Hydrograph (Vista Cany 20 15 (st) wo	
25 Hydrograph (Vista Cany 20 15 (st) wo	
25 Hydrograph (Vista Cany 20 15 (st) wo	
25 Hydrograph (Vista Cany 20 15 (st) wold 10	
25 Hydrograph (Vista Cany 20 15 (st) wold 10	
25 Hydrograph (Vista Cany 20 15 (st) wold 10	

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/25YR/0560-BASIN 1C_081315.pcf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology
Subarea ID	Basin 1C
Area (ac)	24.1
low Path Length (ft)	890.0
low Path Slope (vft/hft)	0.0171
0-yr Rainfall Depth (in)	5.8
Percent Impervious	0.1
Soil Type	20
Design Storm Frequency	25-yr
ire Factor	0
ID	False
Output Results	
Iodeled (25-yr) Rainfall Depth (in)	5.0924
Peak Intensity (in/hr)	1.8727
Indeveloped Runoff Coefficient (Cu)	0.4982
Developed Runoff Coefficient (Cd)	0.5384
ime of Concentration (min)	14.0
Clear Peak Flow Rate (cfs)	24.2978
Burned Peak Flow Rate (cfs) 4-Hr Clear Runoff Volume (ac-ft)	24.2978 2.3127
4-Hr Clear Runoff Volume (ac-it)	100739.3193
25 Hydrograph (Vista Canyon	- Bulk Hydrology: Basin 1C)
25 Hydrograph (Vista Canyon	- Bulk Hydrology: Basin 1C)
25 Hydrograph (Vista Canyon	- Bulk Hydrology: Basin 1C)
20	- Bulk Hydrology: Basin 1C)
20 -	- Bulk Hydrology: Basin 1C)
20 - 15 -	- Bulk Hydrology: Basin 1C)
20 - 15 -	- Bulk Hydrology: Basin 1C)
20 - 15 -	- Bulk Hydrology: Basin 1C)
20 - 15 - (\$3) 00	- Bulk Hydrology: Basin 1C)
20 - 15 -	- Bulk Hydrology: Basin 1C)
20 - 15 - (\$3) 00	- Bulk Hydrology: Basin 1C)
20 - 15 - (\$3) 00	- Bulk Hydrology: Basin 1C)
20 - 15 - (\$3) 00	- Bulk Hydrology: Basin 1C)
20 - 15 - (\$15) MOH 10 -	- Bulk Hydrology: Basin 1C)
20 - 15 - (\$15) MOH 10 -	- Bulk Hydrology: Basin 1C)
20 - 15 - (\$15) MOH 10 -	- Bulk Hydrology: Basin 1C)

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/25YR/0560-BASIN 2C_081315.pcf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology					
Subarea ID	Basin 2C					
Area (ac)	34.8					
Flow Path Length (ft)	1680.0					
Flow Path Slope (vft/hft)	0.0315					
60-yr Rainfall Depth (in)	5.8					
Percent Impervious	0.1					
Soil Type	20					
Design Storm Frequency	25-yr					
Fire Factor	0					
ID	False					
Output Results						
•	5.0024					
Nodeled (25-yr) Rainfall Depth (in)	5.0924 1.5836					
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)						
Developed Runoff Coefficient (Cd)	0.5018					
Time of Concentration (min)	20.0					
Clear Peak Flow Rate (cfs)	27.6561					
Burned Peak Flow Rate (cfs)	27.6561					
24-Hr Clear Runoff Volume (ac-ft)	3.3204					
24-Hr Clear Runoff Volume (cu-ft)	144637.3788					
³⁰ Hydrograph (Vista	Canyon - Bulk Hydrology: Basin 2C)					
30 Hydrograph (Vista 25	Canyon - Bulk Hydrology: Basin 2C)					
30	Canyon - Bulk Hydrology: Basin 2C)					
25	Canyon - Bulk Hydrology: Basin 2C)					
25 - 20 -	Canyon - Bulk Hydrology: Basin 2C)					
25 20 (\$J) MOL	Canyon - Bulk Hydrology: Basin 2C)					


File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/25YR/0560-BASIN 2D_081415.pdf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology				
Subarea ID	Basin 1D				
Area (ac)	16.8				
Flow Path Length (ft)	2640.0				
Flow Path Slope (vft/hft)	0.0212				
50-yr Rainfall Depth (in)	5.8				
Percent Impervious	0.25				
Soil Type	20				
Design Storm Frequency	25-yr				
Fire Factor	0				
_ID	False				
Output Results					
Modeled (25-yr) Rainfall Depth (in)	5.0924				
Peak Intensity (in/hr)	1.352				
Jndeveloped Runoff Coefficient (Cu)	0.416				
Developed Runoff Coefficient (Cd)	0.537				
Time of Concentration (min)	28.0				
Clear Peak Flow Rate (cfs)	12.1974				
Burned Peak Flow Rate (cfs)	12.1974				
24-Hr Clear Runoff Volume (ac-ft)	2.3857				
24-Hr Clear Runoff Volume (cu-ft)	103921.4137				
Hydrograph Offeta (Canyon - Bulk Hydrology: Basin 1D)				
12-	Canyon - Bulk Hydrology: Basin 1D)				
12-10-	Canyon - Bulk Hydrology: Basin 1D)				
14 12- 10 (\$5) 8	Canyon - Bulk Hydrology: Basin 1D)				
14 12 10 (\$j5) Noji 6	Canyon - Bulk Hydrology: Basin 1D)				
14 12 10 (\$j) MOLE 6 4					

File location: l:/Project Files/0560 - VISTA CANYON/HYDROLOGY/BULK HYDROLOGY/HYDROCALC/25YR/0560-BASIN 3D_081415.pdf Version: HydroCalc 0.3.0-beta

Project Name	Vista Canyon - Bulk Hydrology						
Subarea ID	Basin 2D						
Area (ac)	5.0						
Tow Path Length (ft)	1274.0						
low Path Slope (vft/hft)	0.017						
0-yr Rainfall Depth (in)	5.8						
Percent Impervious	0.25						
	20						
Design Storm Frequency	25-yr						
Fire Factor	0						
ID	False						
Dutput Results							
Nodeled (25-yr) Rainfall Depth (in)	5.0924						
Peak Intensity (in/hr) Indeveloped Runoff Coefficient (Cu)	1.7093						
Undeveloped Runoff Coefficient (Cu)	0.4752						
Developed Runoff Coefficient (Cd)	0.5814						
Time of Concentration (min)	17.0 4.9694						
Clear Peak Flow Rate (cfs) Burned Peak Flow Rate (cfs)	4.9694						
24-Hr Clear Runoff Volume (ac-ft)	0.7143						
24-Hr Clear Runoff Volume (cu-ft)	31113.7002						
Hudrograph Olista Capues	Bulk Hudeologus Booin 2D)						
5 Hydrograph (Vista Canyon	- Bulk Hydrology: Basin 2D)						
5 Hydrograph (Vista Canyon	- Bulk Hydrology: Basin 2D)						
	- Bulk Hydrology: Basin 2D)						
4	- Bulk Hydrology: Basin 2D)						
4	- Bulk Hydrology: Basin 2D)						
4-	- Bulk Hydrology: Basin 2D)						
4 - 3 - (\$J2) MOL	- Bulk Hydrology: Basin 2D)						
4 - 3 - (\$J2) MOL	- Bulk Hydrology: Basin 2D)						
4 - 3 - (\$J2) MOL	- Bulk Hydrology: Basin 2D)						
4 - 3 - (\$J2) MOL	- Bulk Hydrology: Basin 2D)						
4 - 3 - (\$J2) MOL	- Bulk Hydrology: Basin 2D)						
4 - 3 - (\$J2) MOL	- Bulk Hydrology: Basin 2D)						
4 - 3 - (\$J2) MOL	- Bulk Hydrology: Basin 2D)						

Appendix C Hydrologic Modeling (LAR04 Output)

INPUT FILE: Q50, INTERIM, BASIN A

006	0560	1A	20	0	.099A294	1	.0001000	C)	G1
006	0560	2A	20	1036	6.624A292	1	.0001000	C)2	2

Program Package Serial Number: 2196 08/14/15 FILE: 0560BA INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M

VISTA (CANYON	I – BULK HY	DRO ANALYS	SIS - BASIN	A - Q5	0							STORM	DAY 4
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATIO	NC	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	тс	ZONE	IMPV
560	1A	.0	.00	.0	.00	4	1.	.01000	.00	.00	0. 20	99	A29	.00
560	2A	36.6	31.13	36.6	31.13	2	1.	.01000	.00	.00	0. 20	24	A29	.10

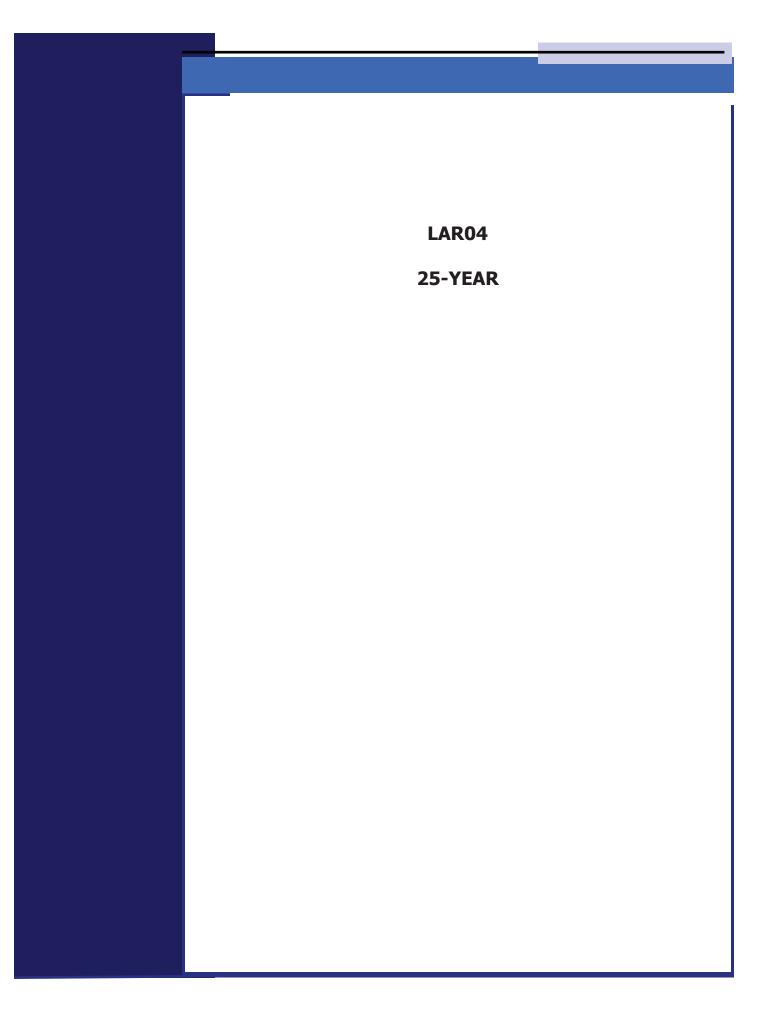
006	0560	1в	20 1032.023A292335.0000770	0 G1
006	0560	2в	20 1013.8 6A294 1.0001000	02 2

Program Package Serial Number: 2196 08/14/15 FILE: 0560BB INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M

VISTA (CANYON	I – BULK HY	DRO ANALYS	SIS - BASIN	IВ – Q5	0							STORM	DAY 4
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATIO	ON	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	тс	ZONE	IMPV
560	1в	32.0	27.99	32.0	27.99	2	335.	.00770	.00	.00	0. 20	23	A29	.10
560	2в	13.8	27.95	45.8	49.69	4	1.	.01000	2.75	.00	0. 20	6	A29	.10

006	0560	1C	20 1024.112A292890.0001710	0	G1
006	0560	2C	20 1034.817A294 1.0001000	02	2

Program Package Serial Number: 2196 08/14/15 FILE: 0560BC INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M


VISTA (CANYON	I – BULK HY	DRO ANALYS	SIS - BASIN	IC - Q50	0							STORM	DAY 4
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATIO	NC	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)) SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	тс	ZONE	IMPV
560	1C	24.1	32.12	24.1	32.12	2	890.	.01710	.00	.00	0. 20	12	A29	.10
560	2C	34.8	37.06	58.9	65.29	4	1.	.01000	3.00	.00	0. 20	17	A29	.10

INPUT FILE: Q50, INTERIM, BASIN D

006	0560	1D	20	2516.824A294	1274001700	0	G1
006	0560	2D	20	25 5.015A294	1.0001000	02	2

Program Package Serial Number: 2196 08/14/15 FILE: 0560BD INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M

VISTA (CANYON	I – BULK HY	DRO ANALYS	SIS - BASIN	D - Q5	0							STORM	DAY 4
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATIO	NC	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	тс	ZONE	IMPV
560	1D	16.8	16.07	16.8	16.07	4	1274.	.01700	2.00	.00	0. 20	24	A29	.25
560	2D	5.0	6.38	21.8	21.81	4	1.	.01000	2.00	.00	0. 20	15	A29	.25

INPUT FILE: Q25, INTERIM, BASIN A

006	0560	1A	20	0	.099A294	1	.0001000	0	(G1
006	0560	2A	20	1036	6.629A292	1	.0001000	02	2	2

Program Package Serial Number: 2196 08/14/15 FILE: 0560BA INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M

VISTA CANYON - BULK HYDRO ANALYSIS - BASIN A - Q25											STORM	day 4		
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATIO	ON	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	тс	ZONE	IMPV
560	1A	.0	.00	.0	.00	4	1.	.01000	.00	.00	0. 20	99	A29	.00
560	2A	36.6	22.74	36.6	22.74	2	1.	.01000	.00	.00	0. 20	29	A29	.10

INPUT FILE: Q25, INTERIM, BASIN B

006	0560	1в	20 1032.027A292335.0000770	0 G1
006	0560	2в	20 1013.8 7A294 1.0001000	02 2

Program Package Serial Number: 2196 08/14/15 FILE: 0560BB INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M

VISTA CANYON - BULK HYDRO ANALYSIS - BASIN B - Q25											STORM	DAY 4		
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATI	ON	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	TC	ZONE	IMPV
560	1в	32.0	20.86	32.0	20.86	2	335.	.00770	.00	.00	0. 20	27	A29	.10
560	2в	13.8	21.47	45.8	38.47	4	1.	.01000	2.50	.00	0. 20	7	A29	.10

INPUT FILE: Q25, INTERIM, BASIN C

006	0560	1C	20 1024.114A292890.0001710	0 G1
006	0560	2C	20 1034.820A294 1.0001000	02 2

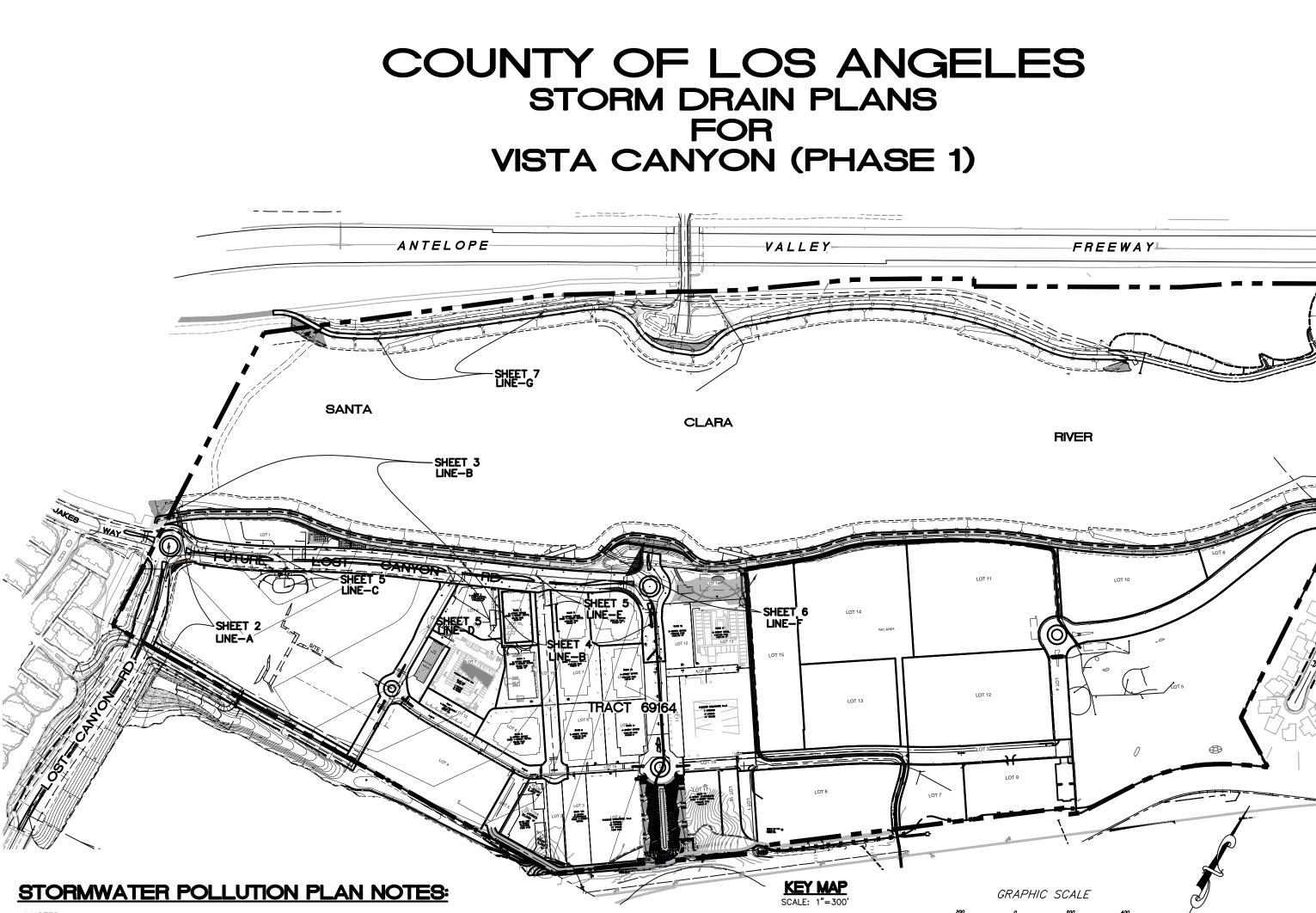
Program Package Serial Number: 2196 08/14/15 FILE: 0560BC INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M

VISTA CANYON - BULK HYDRO ANALYSIS - BASIN C - Q25											STORM	DAY 4		
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATIO	NC	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)) SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	тс	ZONE	IMPV
560	1C	24.1	24.33	24.1	24.33	2	890.	.01710	.00	.00	0. 20	14	A29	.10
560	2C	34.8	27.80	58.9	49.37	4	1.	.01000	2.75	.00	0. 20	20	A29	.10

INPUT FILE: Q25, INTERIM, BASIN D

006	0560	1D	20	0	.099A294	1.0001000	0	(G1
006	0560	2D	20	251	6.828A294	1.0001000	02		2

Program Package Serial Number: 2196 08/14/15 FILE: 0560BD INPUT DATA: English Units RAINFALL SOIL FILE: English (In) OUTPUT DATA: English Units PAGE 1 LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PROG F0601M


Version 11.3, MODIFIED RATIONAL METHOD HYDROLOGY - STORM YEAR = 25 SOIL DATA FILE: C:\civild\lasoilx.dat

VISTA (CANYON	I – BULK HY	DRO ANALYS	SIS - BASIN	D - Q2	5							STORM	DAY 4
		SUBAREA	SUBAREA	TOTAL	TOTAL	CONV	CONV	CONV	CONV	CONV	CONTROL SOIL		RAIN	PCT
LOCATIO	NC	AREA(AC)	Q(CFS)	AREA(AC)	Q(CFS)	TYPE	LNGTH(Ft)	SLOPE	SIZE(Ft)	Z	Q(CFS) NAME	TC	ZONE	IMPV
560	1D	.0	.00	.0	.00	4	1.	.01000	.00	.00	0. 20	99	A29	.00
560	2D	16.8	12.32	16.8	12.32	4	1.	.01000	2.00	.00	0. 20	28	A29	.25

APPENDIX E

STORM DRAIN PLANS FOR VISTA CANYON PHASE 1 (MTD 1851)

	ENERAL NOTES	
1.	A PERMIT SHALL BE OBTAINED AND ALL FILES AND DEPOSITS FOR CONSTRUCTION INSPECTION SHALL BE PAID TO THE DEPARTMENT OF PUBLIC WORKS AT THE PERMIT COUNTER, 900 SOUTH FREMONT AVENUE, 8TH FLOOR, PRIOR TO STARTING WORK UNDER THIS CONTRACT. ALSO ALL OTHER REQUIRED PERMITS, SUCH AS ROAD EXCAVATION PERMITS, MUST BE OBTAINED PRIOR TO STARTING WORK.	
2.	THE CONTRACTOR SHALL CONTACT THE DISTRICT OFFICE LISTED ON THE "APPLICATION FOR STORM DRAIN CONSTRUCTION INSPECTION FORM 1" TO ARRANGE FOR AN ACCEPTABLE CONSTRUCTION START DATE.	
3.	APPROVAL OF THIS PLAN BY THE COUNTY OF LOS ANGELES DOES NOT CONSTITUTE A REPRESENTATION TO THE ACCURACY OF THE LOCATION, OR THE EXISTENCE OR NON-EXISTENCE OF ANY UNDERGROUND UTILITY, PIPE, OR STRUCTURE WITHIN THE LIMITS OF THIS PROJECT. THIS NOTE APPLIES TO ALL SHEETS.	
	ALL WORK SHALL BE IN ACCORDANCE WITH THE LATEST ADOPTED EDITION OF THE "STANDARD SPECIFICATIONS. FOR PUBLIC WORKS CONSTRUCTION" (INCLUDING SUPPLEMENTS) AND SHALL BE PROSECUTED ONLY IN THE	
5.	PRESENCE OF THE DIRECTOR OF PUBLIC WORKS. THE CONTRACTOR'S ATTENTION IS DIRECTED TO SECTION 7–10.4.1 OF THE STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION IN REGARD TO SAFETY ORDERS AND SHALL CONFORM TO THE "MINIMUM PUBLIC SAFETY REQUIREMENTS" AS SHOWN ON THE LOS ANGELES COUNTY DEPARTMENT OF PUBLIC WORKS STANDARD	
6.	PLAN 6008. ELEVATIONS ARE IN FEET ABOVE U.S.C. & G.S. MEAN SEA LEVEL DATUM OF 1929, UNLESS OTHERWISE INDICATED.	
7.	NO CONCRETE SHALL BE PLACED UNTIL THE FORMS AND REINFORCING STEEL HAVE BEEN PLACED, INSPECTED AND APPROVED.	
8. 9.	ALL STRUCTURAL CONCRETE SHALL BE PORTLAND CEMENT CONCRETE WITH AN ULTIMATE 28 DAY COMPRESSIVE STRENGTH OF 4000 P.S.I. UNLESS OTHERWISE NOTED. TRANSVERSE REINFORCEMENT AND TRANSVERSE JOINTS SHALL BE PLACED AT RIGHT ANGLES (OR RADIAL) TO	
	THE CONDUIT CENTERLINE EXCEPT AS OTHERWISE SHOWN ON THE DRAWINGS. ALL STEEL ADJACENT TO FACE OF CONCRETE SHALL HAVE 2.5" CLEARANCE UNLESS OTHERWISE SPECIFIED.	
11.	STEEL CLEARANCE FOR RCB INVERT SHALL BE A MINIMUM OF 3 INCHES. REINFORCEMENT SHALL BE DEFORMED BARS OF INTERMEDIATE GRADE STEEL PER A.S.T.M. A-615-GRADE 60.	
12.	ALL BAR BENDS AND HOOKS SHALL CONFORM TO THE AMERICAN CONCRETE INSTITUTE "MANUAL OF STANDARD PRACTICE".	
	DIMENSIONS FROM FACE OF CONCRETE TO STEEL ARE TO CENTERLINE OF STEEL UNLESS OTHERWISE NOTED. ALL STEEL THAT IS TO BE CONTINUOUS SHALL HAVE A MINIMUM LAP OF 30 BAR DIAMETERS OR 18 INCHES, WHICHEVER IS GREATER.	
	ALL CONSTRUCTION JOINTS IN THE FOOTING OR SLABS AND WALLS SHALL BE IN THE SAME PLANE. NO STAGGERING OF JOINTS WILL BE PERMITTED.	
	ALL EXPOSED EDGES SHALL BE FINISHED WITH A 3/4" CHAMFER.	
	UNLESS OTHERWISE SHOWN, CONCRETE DIMENSIONS SHALL BE MEASURED VERTICALLY OR HORIZONTALLY AND PARALLEL OR AT RIGHT ANGLES (OR RADIAL) TO THE CENTERLINE OF CONSTRUCTION. CONCRETE BACK FILL IS REQUIRED WHEN THE PIPE HAS LESS THAN ONE-FOOT OF COVER. THE CONCRETE	
10	BACK FILL SHALL BE 1: 3: 5 MIX, PORTLAND CEMENT CONCRETE POURED FROM WALL TO WALL OR TRENCH AND FROM BOTTOM OF TRENCH TO A MINIMUM OF 4 INCHES OVER THE TOP OF THE PIPE.	
	ALL PIPES SHALL BE PLACED IN TRENCH IN NATURAL GROUND AND/OR COMPACTED FILL. THE GROUND LEVEL BEFORE THE TRENCHING SHALL BE AT LEAST 3 FEET ABOVE THE TOP OF THE PIPE ELEVATION, OR AT FINISH SURFACE ELEVATION, WHICHEVER IS LESS.	AN CONTRACTOR
20.	ALL BACK FILL AND RELATIVE COMPACTION FILLS OUTSIDE OF STREET RIGHT OF WAY SHALL BE COMPACTED TO A MINIMUM RELATIVE COMPACTION OF 90% OF MAXIMUM DRY DENSITY AS DETERMINED BY ASTM SOIL TEST D1557-91, METHOD "D" UNLESS OTHERWISE SPECIFIED. THIS SHALL BE CERTIFIED BY A SOILS ENGINEER. THIS CERTIFICATION SHALL BE SUBMITTED TO THE DIRECTOR CITY ENGINEER PRIOR TO ACCEPTANCE OF THE WORK BY THE COUNTY.	
21.	ALL BACK FILL AND FILLS WITHIN STREET RIGHT OF WAY SHALL BE COMPACTED IN ACCORDANCE WITH CITY REQUIREMENTS UNLESS OTHERWISE NOTED AND INSPECTED BY THE CITY. THE SOIL COMPACTION SHALL BE CERTIFIED BY A GEOTECHNICAL ENGINEER. ALL FILL MATERIALS SHOULD BE COMPACTED TO 90 PERCENT RELATIVE COMPACTION WITH ABOVE OPTIMUM MOISTURE CONTENT IN FILL DEPTHS TO 40' BELOW GRADE AND 93 PERCENT COMPACTION FOR ALL DEPTHS GREATER THAN 40 FEET BELOW GRADE.	
22.	PIPE BEDDING SHALL BE: IN ACCORDANCE WITH COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS STANDARD PLAN NO. 3092 UNLESS OTHERWISED NOTED. OR	, L
	ACCORDING TO STANDARD PLAN NO. 3080, CASE III, EXCEPT BELL AND SPIGOT PIPE, WHICH SHALL BE CASE II BEDDING UNLESS OTHERWISE SHOWN. W VALVES SHALL BE AS SPECIFIED ON STANDARD PLAN NO. 3080 FOR CASE III BEDDING, NOTES 3(A), 3(B), AND 3(C). IF THE W VALUE AT THE TIP OF THE PIPE IS EXCEEDED, THE BEDDING SHALL BE MODIFIED AND/OR PIPE OF ADDITIONAL STRENGTH SHALL BE PROVIDED. THE PROPOSED MODIFICATION SHALL BE APPROVED BY PUBLIC WORKS.	
23.	PIPE SHALL BE EMBEDDED 5 INCHES INTO ALL STRUCTURES INCLUDING INLET AND HEADWALLS, UNLESS OTHERWISE SPECIFIED.	7
24.	MINIMUM CONCRETE COVER FOR REINFORCEMENT IN PRECAST CONCRETE PIPE SHALL BE IN INCH IN PIPE HAVING A WALL THICKNESS OF $2-1/2$ INCHES OR GREATER AND $3/4$ INCH IN PIPE HAVING A WALL THICKNESS OF LESS THAN $2-1/2$ INCHES.	
	ALL CATCH BASINS WITHIN THE DEDICATED STREET RIGHT-OF-WAY SHALL BE CONSTRUCTED PER THE STREET PLANS. THE CONTRACTOR SHALL PROVIDE TO THE SATISFACTION OF THE DIRECTOR OF PUBLIC WORKS A SYSTEM FOR CONTRIBUTORY FLOWS TO BE OPERABLE AT ALL TIMES UNTIL STORM DRAIN SYSTEM IS ACCEPTED FOR MAINTENANCE. THE DESIGN OF THE DRAINAGE SYSTEM MUST BE PREPARED UNDER THE DIRECTION OF A CIVIL	
27.	ALL REFERENCES ON THIS PLAN TO THE COUNTY ENGINEER, ROAD DEPARTMENT, OR FLOOD CONTROL DISTRICT SHALL APPLY TO THE APPROPRIATE ELEMENTS OF PUBLIC WORKS.	9/11/1 N VI
	DISTRICT SHALL APPLY TO THE APPROPRIATE ELEMENTS OF PUBLIC WORKS. EXISTING UTILITIES SHALL BE MAINTAINED IN PLACE BY THE CONTRACTOR, UNLESS OTHERWISE NOTED.	<u>STO</u>
29.	WHERE THE UTILITIES ARE INDICATED ON THE DRAWINGS TO BE SUPPORTED, SAID SUPPORTS-SHALL BE IN ACCORDANCE WITH STANDARD PLANS FOR PUBLIC WORKS CONSTRUCTION NO. 224, UNLESS OTHERWISE INDICATED.	A. <u>NOTES</u>
30.	ALL OPENINGS RESULTING FROM THE CUTTING OR PARTIAL REMOVAL OF EXISTING CULVERTS, PIPES OR SIMILAR STRUCTURES SHALL BE SEALED WITH 8 INCHES OF BRICK AND MORTAR OR 6 INCHES OF CONCRETE, UNLES OTHERWISE SHOWN.	1.EVERY TIMES 2.ERODE
31.	MANHOLES PER SHALL USE THE STANDARD PLANS FOR PUBLIC WORKS CONSTRUCTION 630 FOR THE "FRAME AND COVER" AND 635 FOR THE "STANDARD DROP STEP".	Z.ERODE VIA S 3.STOCH
32.	THIS STORM DRAIN WILL NOT BE FIELD ACCEPTED UNTIL THE STREETS HAVE BEEN PAVED, MANHOLES BROUGHT TO GRADE AND THE SYSTEM CLEANED TO THE SATISFACTION OF THE DIRECTOR OF PUBLIC WORKS.	FROM 4.FUELS
	A NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT FROM THE REGIONAL WATER QUALITY CONTROL BOARD IS REQUIRED BEFORE ANY DISCHARGE OF NON-STORMWATER INTO THE STORM DRAIN IS ALLOWED.	NOT FROM NOT I
	THE LATEST REVISED STANDARD PLAN OR DRAWING SHALL BE USED UNLESS OTHERWISE NOTED. THE SOILS ENGINEER OF RECORD SHALL INSPECT AND APPROVE THE FOUNDATION EXCAVATIONS BEFORE STEEL OR CONCRETE IS PLACED.	5.EXCES PROV
36.	STORM DRAIN MANHOLE COVERS CONSTRUCTED PER S.P.P.W.C. STANDARD PLANS 630, 631, 632, AND 633 SHALL BE CAST WITH THE LETTERS "L.A.C.F.C.D.". THE LETTERS SHALL BE 1 INCH IN HEIGHT AND PLACED BELOW THE LETTER "D" IN THE CENTER OF THE COVER.	6.TRASH CONT
	STORM DRAIN MANHOLE COVERS CONSTRUCTED PER S.P.P.W.C. STANDARD PLANS 312 SHALL BE CAST WITH THE LETTERS "L.A.C.F.C.D.". THE LETTERS SHALL BE 1 INCH IN HEIGHT AND PLACED BELOW THE LETTER "D" IN THE	7.SEDIM ENTR/
	CENTER OF THE COVER. ALL THE ABOVE GROUND FACILITIES SHALL BE STAMPED WITH THE DRAIN AND LINE NAME. THE LETTERING SHOULD	ACCID 8.ANY S
39.	BE 4" BLACK TEXT ON A YELLOW BACKGROUND. EVERY 100 FEET STATIONS SHALL BE LABELED ON THE INSIDE OF ALL STORM DRAINS AND WALL OF OPEN CHANNELS. THE LETTERING SHOULD BE 4" BLACK TEXT ON A YELLOW BACKGROUND AND SHALL BE PLACED IN THE SOFFIT OF PIPES AND THE TOP 2 FEET OF A CHANNEL WALL.	WIND B.THE FOL
	FOR ALL DEBRIS BASINS, THE 0%, 5%, AND 25% DEBRIS CONE ELEVATIONS SHALL BE LABELED ON THE CONCRETE	<u>(CONSTE</u> DURING PROJEC
	FACING SLAB AND THE STAND PIPE.	<u>E</u> f
. 1.	FILL SHALL BE COMPACTED THROUGHOUT IT'S FULL EXTENT TO A MINIMUM OF 90% OF MAXIMUM DRY DENSITY AS DETERMINED BY A.S.T.M.TEST METHOD STANDARD D1557 OR THE CURRENT EDITION, WHERE APPLICABLE; WHERE NOT	EC EC EC
0	APPLICABLE A TEST ACCEPTABLE TO THE CITY ENGINEER SHALL BE USED17.27.020(A)	EC EC EC EC
2.	TRENCH BACKFILLS UNDERLYING PAVEMENTS SHALL BE COMPACTED TO A MINIMUM RELATIVE COMPACTION OF 90 PERCENT OF MAXIMUM DRY DENSITY, TO A DEPTH OF 24 INCHES BELOW THE PAVEMENT SECTION.	EC
3. 4.	FIELD DENSITY SHALL BE DETERMINED BY A METHOD ACCEPTABLE TO THE CITY ENGINEER. SUFFICIENT TESTS OF FILL SOILS SHALL BE MADE TO DETERMINE THE RELATIVE COMPACTION OF THE FILL IN	EC EC EC EC EC
	ACCORDANCE WITH THE FOLLOWING GUIDELINES: (a) ONE TEST FOR EACH TWO FOOT VERTICAL LIFT. (b) ONE TEST FOR EACH 1000 CUBIC YARDS OF MATERIAL PLACED.	EC EC EC EC
	(c) ONE TEST AT THE LOCATION OF THE FINAL FILL SLOPE FOR EACH BUILDING SITE (LOT) IN EACH FOUR FOOT VERTICAL LIFT OR PORTION THEREOF.	Ţ
F	(d) ONE TEST IN THE VICINITY OF EACH BUILDING PAD FOR EACH FOUR FOOT VERTICAL LIFT OR PORTION THEREOF.	SE SE SE
5.	SUFFICIENT TESTS OF FILL SOILS SHALL BE MADE TO VERIFY COMPLIANCE OF THE SOIL PROPERTIES COMPLY WITH THE DESIGN REQUIREMENTS, AS DETERMINED BY THE GEOTECHNICAL ENGINEER, INCLUDING SOIL TYPES AND SHEAR STRENGTHS. THE RESULTS OF SUCH TESTING SHALL BE INCLUDED IN THE REPORTS REQUIRED BY SECTION 17.29.020(C)	SE
6.	NO FILL SHALL BE PLACED UNTIL STRIPPING OF VEGETATION, REMOVAL OF UNSUITABLE METHOD FOR MOISTURE, ASH, ORGANIC MATTER, PEAT OR OTHER ORGANIC SOILS" ASTM SOILS HAS BEEN PERFORMED. THE CITY ENGINEER MAY	SE SE
	REQUIRE A "STANDARD" TEST D-2974-87 ON ANY SUSPECT MATERIAL. ALL MATERIALS THAT HAVE A TEST VALUE OF 10 PERCENT OR GREATER WILL BE REJECTED AS UNSUITABLE FOR SUPPORT OF OR BEING STRUCTURAL FILL.	SE SE SE
7.	ROCK OR SIMILAR MATERIAL GREATER THAN 8 INCHES IN DIAMETER SHALL NOT BE PLACED IN THE TRENCH BACKFILL.	SĒ
8.	OPERATIONS.	1668
9.	THE GEOTEHNICAL ENGINEER SHALL PROVIDE SUFFICIENT INSPECTIONS DURING THE PREPERATION OF THE NATURAL GROUND AND THE PLACEMENT AND COMPACTION OF THE	S MON IN V PI 600MM
	PLAN AND APPLICABLE CODE REQUIREMENTS17.29.010(D)	CANYON RO OAK SPRINGS IEAST OF P
10.	ALL GRADING AND CONSTRUCTION SHALL CONFORM TO CHAPTERS 70 AND 71 OF THE MKD (LOS ANGELES BUILDING CODE UNLESS SPECIFICALLY NOTED ON THESE PLANS AND TO THE RECOMMENDATIONS PROVIDED IN THE SOILS REPORT, BULK GRADING PLAN REVIEW ELEVATION: 1586	PI 24)
	PREPARED BY FRANKLIN & ASSOCIATES DATED 11/9/15 (RTFA, 2015C)	

LINE

LINE 'A'

STATION

+00.00 TO 3+28.72

3+28.72 TO 3+78.77

- SHEETFLOW, SWALES, AREA DRAINS, NATURAL DRAINAGE COURSES OR WIND.
- I THE SITE BY THE FORCES OF WIND OR WATER.
- I THE WEATHER. SPILLS MUST BE CLEANED UP IMMEDIATELY AND DISPOSED OF IN A PROPER MANNER. SPILLS MAY BE WASHED INTO THE DRAINAGE SYSTEM.
- TAMINATION OF RAINWATER AND DISPERSAL BY WIND.
- SLOPES WITH DISTURBED SOILS OR DENUDED OF VEGETATION MUST BE STABILIZED SO AS TO INHIBIT EROSION BY AND WATER.
- TRUCTION) OR CALTRANS STORMWATER QUALITY HANDBOOKS (CONSTRUCTION SITE BMP MANUAL). MAY APPLY 3 THE CONSTRUCTION OF THIS PROJECT (ADDITIONAL MEASURES MAY BE REQUIRED IF DEEMED APPROPRIATE BY 1 THE CONSTRUCTION OF THIS PROJECT (ADDITIONAL MEASURES T ENGINEER OR THE BUILDING OFFICIAL):

ROSION CONTROL

- SCHEDULING
 PRESERVATION OF EXISTING VEGETATION
 HYDRAULIC MULCH
 HYDROSEEDING
 SOIL BINDERS
 STRAW MULCH
 GEOTEXTILE AND MATS
 WOOD MULCHING
 EARTH DIKES AND DRAINAGE SWALES
 VELOCITY DISSIPATION DEVICES
 SLOPE DRAINS
 2 STREAMBANK STABILIZATION
 3 RESERVED

- RESERVED COMPOST BLANKETS SOIL PREPARATION/ROUGHENING NON-VEGETATED STABILIZATION

EMPORARY SEDIMENT CONTRO

- E1 SILT FENCE 52 SEDIMENT BASIN 53 SEDIMENT TRAP 4 CHECK DAM 5 FIBER ROLLS 3 GRAVEL BAG BERM 7 STREET SWEEPING AND VACUUMING SANDBAG BARRIER STRAW BALE BARRIER) STORM DRAIN INLET PROTECTION ACTIVE TREATMENT SYSTEMS TEMPORARY SILT DIKE COMPOST SOCKS AND BERMS BIOFILTER BAGS

RIPTION		N IN WEL OOMM EA					
ATION:	SAND CANY LIVE OAK S NORTHEAST MKD (PI 24	PRINGS C	ANYON	ROA[D 8.2M		
ATION:	1586.011	DATUM:	NAVD	88 (1995 A	.DJ.)	

Y EFFORT SHOULD BE MADE TO ELIMINATE THE DISCHARGE OF NON-STORMWATER FROM THE PROJECT SITE AT ALL

DED SEDIMENTS AND OTHER POLLUTANTS MUST BE RETAINED ON-SITE AND MAY NOT BE TRANSPORTED FROM THE SITE

XPILES OF EARTH AND OTHER CONSTRUCTION RELATED MATERIALS MUST BE PROTECTED FROM BEING TRANSPORTED

, OILS, SOLVENTS, AND OTHER TOXIC MATERIALS MUST BE STORED IN ACCORDANCE WITH THEIR LISTING AND ARE TO CONTAMINATE THE SOIL AND SURFACE WATERS. ALL APPROVED STORAGE CONTAINERS ARE TO BE PROTECTED

SS OR WASTE CONCRETE MAY NOT BE WASHED INTO THE PUBLIC WAY OR ANY OTHER DRAINAGE SYSTEM. ISIONS SHALL BE MADE TO RETAIN CONCRETE WASTES ON-SITE UNTIL THEY CAN BE DISPOSED OF AS SOLID WASTE. CH AND CONSTRUCTION RELATED SOLID WASTES MUST BE DEPOSITED INTO A COVERED RECEPTACLE TO PREVENT

IENTS AND OTHER MATERIALS MAY NOT BE TRACKED FROM THE SITE BY VEHICLE TRAFFIC. THE CONSTRUCTION RANCE ROADWAYS MUST BE STABILIZED SO AS TO INHIBIT SEDIMENTS FROM BEING DEPOSITED INTO THE PUBLIC WAY. IDENTAL DEPOSITIONS MUST BE SWEPT UP IMMEDIATELY AND MAY NOT BE WASHED DOWN BY RAIN OR OTHER MEANS.

DLLOWING BMPS AS OUTLINED IN, BUT NOT LIMITED TO, THE LATEST EDITION OF THE CALIFORNIA BMP HANDBOOK

EASURE	S MAY BE REQUIRED IF DEEMED APPROPRIATE BY THE		3+78.77 TO 7+57.30	98.75	42" RCP	0.0096	1.31	10.27	FULL			
		LAT 'A-1'	1+00.00 TO 1+60.59	2.42	18" RCP	0.0005	2.00	1.37	FULL			
	WIND EROSION CONTROL	LAT 'A-2'	1+00.00 TO 1+29.34	2.82	18" RCP	0.0007	2.01	1.60	FULL			
	WE1 - WIND EROSION CONTROL	LAT 'A-3'	1+00.00 TO 1+52.00	98.75	42" RCP	0.0096	2.00	10.26	FULL			
	EQUIPMENT TRACKING CONTROL		1+00.00 TO 1+77.25	2.25	18" RCP	0.0005	1.22	1.27	FULL	1		
	TC1 – STABILIZED CONSTRUCTION ENTRANCE / EXIT TC2 – STABILIZED CONSTRUCTION ROADWAY	LINE B	1+00.00 TO 5+50.72	89.10	48" RCP	0.0039	0.50	7.09	FULL	DRAI	NS TO NATUR	RAL CHANNEL
	TC3 – ENTRANCE / OUTLET TIRE WASH	LINE 'B'	5+50.72 TO 11+77.40	43.41	36" RCP	0.0064	0.80	7.55	FULL			
	NON-STORMWATER MANAGEMENT	LINE 'B'	11+77.40 TO 15+02.93	34.43	36" RCP	0.0048	0.80	6.55	FULL			
	NS1 – WATER CONSERVATION PRACTICES NS2 – DEWATERING OPERATIONS	LINE 'B'	15+02.93 TO 20+25.42	4.34	24" RCP	0.0066	1.00	5.83	FULL			
	NS2 - DEWATERING OPERATIONS NS3 - PAVING AND GRINDING OPERATIONS NS4 - TEMPORARY STREAM CROSSING NS5 - CLEAR WATER DIVERSION NS6 - ILLICIT CONNECTION / DISCHARGE NS7 - PORTABLE WATER / IRRIGATION NS8 - VEHICLE AND EQUIPMENT CLEANING NS9 - VEHICLE AND EQUIPMENT FUELING NS10 - VEHICLE AND EQUIPMENT MAINTENANCE NS11 - PILE DRIVING OPERATIONS NS12 - CONCRETE CURING NS13 - CONCRETE FINISHING NS14 - MATERIAL AND EQUIPMENT USE NS15 - DEMOLITION ADJACENT TO WATER NS16 - TEMPORARY BATCH PLANTS	LINE 'C'	1+05.10 TO 2+36.87	42.13	42" RCP	0.0040	0.44	5.96	FULL			
	NS5 - CLEAR WATER DIVERSION	LINE 'D'	1+04.10 TO 2+12.37	8.97	24" RCP	0.0016	2.00	2.86	FULL			
OL	NS7 – PORTABLE WATER / IRRIGATION NS8 – VEHICLE AND FOULIEMENT CLEANING	LINE 'E'	1+04.60 TO 2+23.53	29.21	30" RCP	0.0051	1.13	5.95	FULL			
	NS9 – VEHICLE AND EQUIPMENT FUELING NS10 – VEHICLE AND EQUIPMENT MAINTENANCE	LINE 'F'	1+00.00 TO 7+04.35	326.71	4'Hx8'W RCB	0.0054	0.40	10.21	FULL	DRAI	NS TO NATUR	RAL CHANNEL
	NS11 – PILE DRIVING OPERATIONS NS12 – CONCRETE CURING	LINE 'G'	1+00.00 TO 1+20.69	22.31	24" RCP	0.0097	3.93	7.10	FULL	DRAI	NS TO NATUR	RAL CHANNEL
	NS13 – CONCRETE FINISHING NS14 – MATERIAL AND EQUIPMENT USE	LINE 'G'	1+20.69 TO 10+63.57	22.31	24" RCP	0.0097	0.50	7.10	FULL			
	NS15 – DEMOLITION ADJACENT TO WATER NS16 – TEMPORARY BATCH PLANTS	LINE 'G'	10+63.57 TO 11+90.33	21.01	24" RCP	0.0086	0.50	6.69	FULL			
	WASTE MANAGEMENT AND MATERIA	LINE 'G'	11+90.33 TO 12+27.05	14.82	24" RCP	0.0043	0.50	4.72	FULL			
	POLLUTION CONTROL											
	WM1 - MATERIAL DELIVERY AND STORAGE										·	
	WM2 – MATERIAL USE WM3 – STOCK PILE MANAGEMENT	NO.	RE	VISION		R	EVISED B	ŕ	APPROVED E	BY	DATE	
	WM3 - STUCK FILE MANAGEMENT WM4 - SPILL PREVENTION AND CONTROL WM5 - SOLID WASTE MANAGEMENT WM6 - HAZARDOUS WASTE MANAGEMENT WM7 - CONTAMINATION SOIL MANAGEMENT WM8 - CONCRETE WASTE MANAGEMENT WM9 - SANITARY / SEPTIC WASTE MANAGEMENT WM10 - LIQUID WASTE MANAGEMENT	Â	REMOVED SAFETY LEI ADDED BLANKET PRO			lu	- j Uhitt	<i>v</i>			03/25/16	
	WM9 - SANITART / SEPTIC WASTE MANAGEMENT WM10 - LIQUID WASTE MANAGEMENT		REPLACED SHEET 2 V SHEETS 3,4 & 5 ADI LAT A-1,A-2,B-1,B- LINE B. ADDED MAIN	DING CATCH -2,B-3 & E-	BASINS TO -1. REVISED	lu	-fulkiti -fulkiti -fulkiti	v			03/06/17	0
	BY CITY ENGINEER DATE	_ 🔬	REPLACED SHEET 2A A-1 PLAN AND PROF		EVISED LATERA	L <i>la</i>	- j Mhitt	v				

ALL CATCH BASIN AND INLETS THAT DISCHARGE INTO AN EXISTING OR PROPOSED STORM DRAIN MUST BE STENCILED TO DISCOURAGE ILLEGAL DUMPING OF POLLUTANTS. THIS STENCIL SHALL HAVE A MINIMUM DIAMETER OF 30 INCHES.

CONDUIT

SIZE

42" RCP

42" RCP

CATCH BASIN STENCIL DETAIL

050YR.

C.F.S.

103.06

100.85

REMARKS

DRAINS TO NATURAL CHANNE

HYDRAULIC ELEMENTS

105

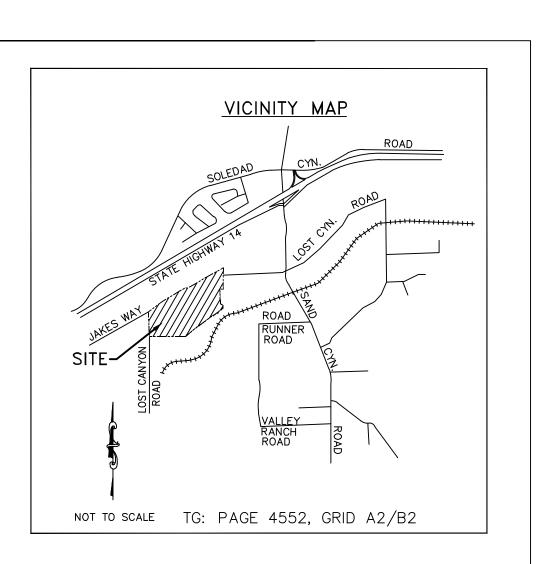
0100

1.31

1.31

(IN FEET) 1 inch = 300 ft.

PIPE SLOPE VELOCITY DEPTH OF


10.71

10.48

FULL

FULL

Sf IN % FT/SEC FLOW (FT)

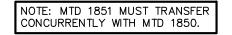
INDEX OF PROJECT DRAWINGS

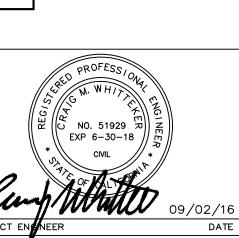
<u>SHEET. NO.</u>	DESCRIPTION
1	TITLE SHEET - NOTES
-2	LINE "A", LAT "A-1" & "A-2" PLAN AND PROFILE
3	LINE "B" PLAN AND PROFILE
4	LINE "B" PLAN AND PROFILE
5	LINE "C", "D" AND "E" PLAN AND PROFILE
6	LINE "F" PLAN AND PROFILE
7	LINE "G" PLAN AND PROFILE
8	EASEMENT SHEET
9	DETAILS
10	DETAILS
	LINE "A", LAT "A-1"&"A-2" PLAN AND PROFILE

REVISED LAT "A-1" PLAN AND PROFIL

LIST OF STANDARDS

STANDARD PLANS FOR PUBLIC WORKS CONSTRUCTION


(2009 EDITION)	SPPWC DWG.
A BLANKET PROTECTION FOR PIPES	225-2
MANHOLE PIPE TO PIPE (36" OR LARGER)	320-2
MANHOLE PIPE TO PIPE (33" OR SMALLER)	321-2
MANHOLE PIPE TO PIPE (LARGE SIDE INLET)	322-2
MANHOLE-CONCRETE BOX STORM DRAIN	323-2
A MANHOLE SHAFT SAFETY LEDGE	- 330 - 2
JUNCTION STRUCTURE PIPE TO PIPE	331-3
JUNCTION STRUCTURE PIPE TO PIPE	332-2
JUNCTION STRUCTURE PIPE TO RCB	333–2
TRANSITION STRUCTURE PIPE TO PIPE	340-2
CONCRETE COLLAR FOR RCP	380-4
MANHOLE FRAME AND COVER	630-3
PIPE BEDDING	3092-0 (L.A.C.D.P.W.)
SAFETY REQUIREMENTS	6008-1 (L.A.C.D.P.W.)


GEOLOGY AND SOILS NOTES

- 1. ALL RECOMMENDATIONS INCLUDED IN R.T. FRANKIAN AND ASSOCIATES STORM DRAIN REPORT "REPORT OF GEOTECHNICAL PLAN REVIEW, STORM DRAIN-PHASE 2" PREPARED BY RTFA DATED 1/27/17 AND ALL ADDENDUM'S MUST BE COMPLIED WITH AND ARE PART OF THE GRADING AND STORM DRAIN SPECIFICATIONS.
- 2. THE PROPOSED STORM DRAIN BOX STRUCTURE WILL BE SUPPORTED ON EITHER NATURAL SOILS COMPACTED TO A MINIMUM OF 95 PERCENT RELATIVE COMPACTION OR A MINIMUM OF 12 INCHES OF UNIFORM SIZE, CRUSHED, COMPACTED, 3/4-INCH GRAVEL SHOULD BE PLACED BELOW THE BOTTOM OF THE STORM DRAIN BOX STRUCTURE PROVIDED THE GRAVEL IS PLACED UPON RELATIVELY FIRM, NATURALLY DEPOSITED SOIL.
- 3. RUBBER GASKETS SHALL BE ADDED TO A MINIMUM OF THREE PIPE LENGTHS ON EACH SIDE OF SOILS TRANSITIONS.

PRIVATE ENGINEER NOTICE TO CONTRACTORS:

THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITY PIPES OR STRUCTURES SHOWN ON THESE PLANS ARE OBTAINED BY A SEARCH OF THE AVAILABLE RECORDS. TO THE BEST OF OUR KNOWLEDGE THERE ARE NO EXISTING UTILITIES EXCEPT AS SHOWN ON THIS MAP. THE CONTRACTOR IS REQUIRED TO TAKE DUE PRECAUTIONARY MEASURES TO PROTECT THE UTILITY LINES SHOWN AND ANY OTHER LINES NOT OF RECORD OR NOT SHOWN ON THIS DRAWING. PRIOR TO EXCAVATION THE CONTRACTOR SHALL CALL TOLL FREE (800) 422-4132 TO VERIFY THE UNDERGROUND LOCATION OF GAS AND TELEPHONE LINES.

LINES INDICATED AS "NOT TO BE MAINTAINED B

TRACT No. 69164

BY CITY OF SANTA CLARITA."

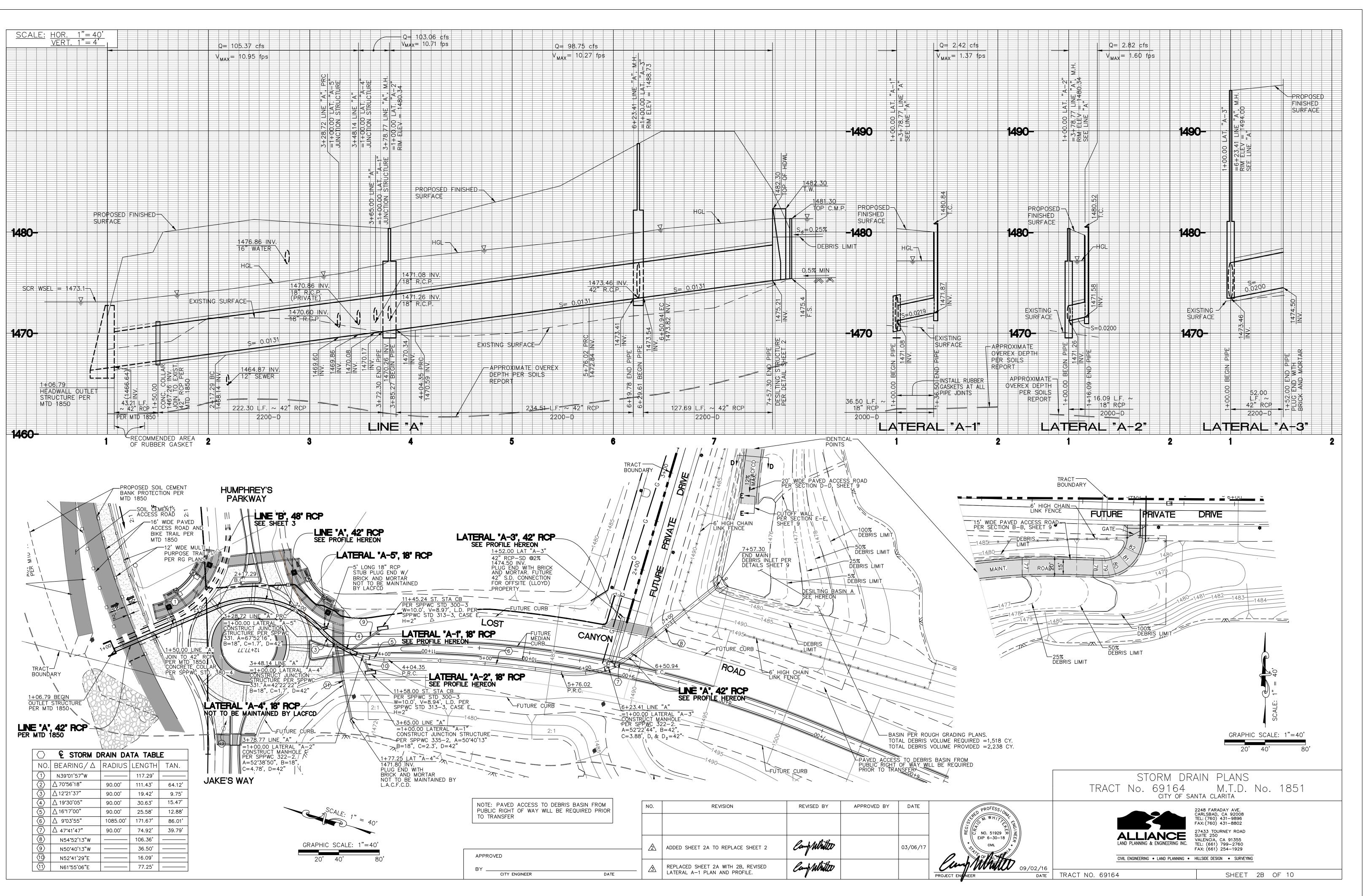
L.A.C.F.C.D." ARE ALSO "NOT TO BE MAINTAINED

2248 FARADAY AVE. CARLSBAD, CA 92008 TEL: (760) 431-9896 FAX: (760) 431-8802 27433 TOURNEY ROAD SUITE 250 VALENCIA, CA 91355 TEL: (661) 799–2760 FAX: (661) 254–1929

CIVIL ENGINEERING • LAND PLANNING • HILLSIDE DESIGN • SURVEYING

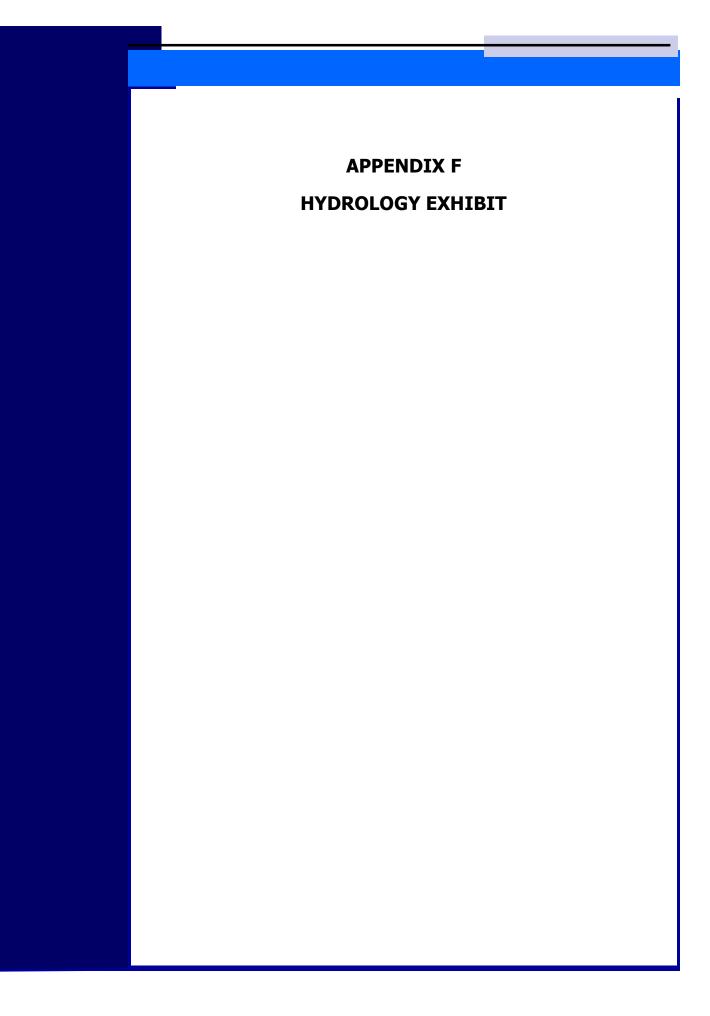
STORM DRAIN PLANS

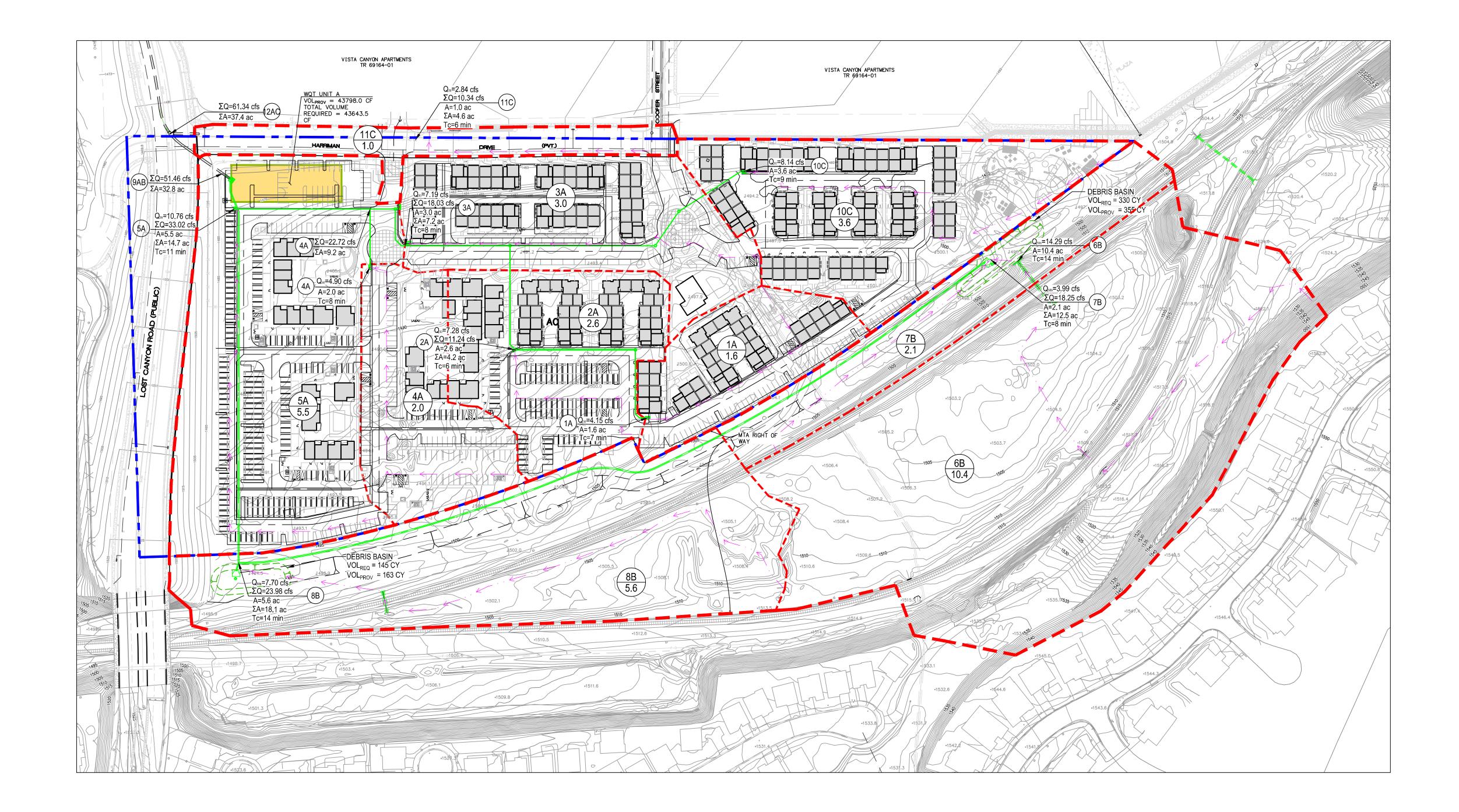
DATE TRACT NO. 69164


SHEET 1 OF 10

STORMDRAIN EASEMENT DEDICATION

LINE	LENGTH (FT)	AREA OF EASEMENT (SQ FT)		
А	608	590		
В	1,881	590		
В	1,881	4,905		
F	573	12,485		
G	1,110	6,845		
SEE SHEET 8	R FOR FASEM	ΕΝΤ Ι ΔΥΟΠΤΟ		


SEE SHEET 8 FOR EASEMENT LAYOUTS


M.T.D. No. 1851

I: \CAD\0560_ALT_C\STORM-DRAIN\0560-STORM-DRAIN-SHEET-02B.dwg

NOTE: PAVED ACCESS TO DEBRIS BASIN FROM PUBLIC RIGHT OF WAY WILL BE REQUIRED PRIOR	NO.	REVISION	REVISED BY	APPROVED BY	DATE	
TO TRANSFER						
		ADDED SHEET 2A TO REPLACE SHEET 2	Conjulate		03/06/17	
APPROVED						1
BY	3	REPLACED SHEET 2A WITH 2B, REVISED LATERAL A-1 PLAN AND PROFILE.	Carphilatter			
			(PROJECT E

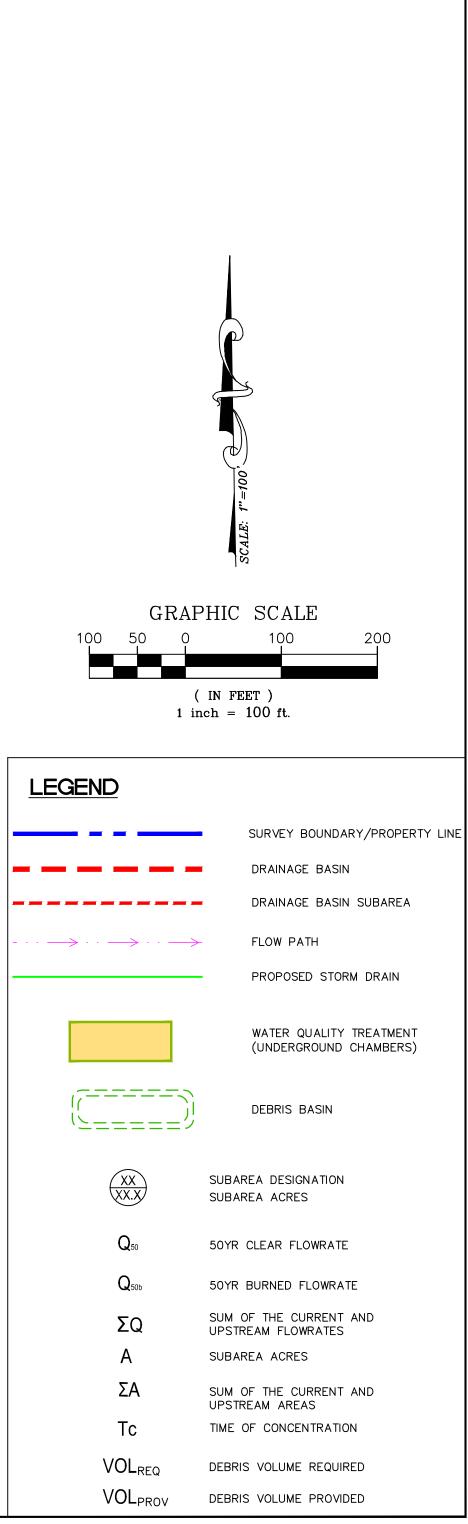
CURADEA	4054		OVE	RLAND (Tc)		FO V-DAIN	1840		0044	
SUBAREA	AREA	HI	LO	LENGTH	SLOPE	50-Yr RAIN	IMP	SOIL	DPA #	50-YR
	ac	ft	ft	ft	ft/ft	in/24 HR	%			min
1A	1.6	1501	1497	438	0.0091	6.10	86	20	9	7
2A	2.6	1498	1493	399	0.0125	6.10	86	20	9	6
3A	3.0	1497	1487	697	0.0144	6.10	82	20	9	8
4A	2.0	1495	1489	647	0.0093	6.10	88	20	9	8
5A	5.5	1493	1485	886	0.0090	6.10	68	20	9	11
6B	10.4	1515	1497	1096	0.0164	6.10	8	20	9	14
7B	2.1	1507	1497	533	0.0188	6.10	8	20	9	8
8B	5.6	1513	1494	1109	0.0171	6.10	8	20	9	14
10C	3.6	1510	1494	854	0.0187	6.10	80	20	9	9
11C	1.0	1490	1483	482	0.0145	6.10	91	20	9	6

MTD 1851 FLOWRATES

MAX ALLOWED

PROPOSED PROJECT

FLOWRATES (Q)


cfs

98.75

61.34

I: \CAD\1934\HYDROLOGY\1934-WQT-HYDRO.dwg

MetroWalk HYDROLOGY EXHIBIT 7/24/20

USMP/LID REPORT

City of Santa Clarita

MetroWalk

TR 83087

Prepared For: **New Urban West, INC.** 2001 Wilshire Blvd., Suite 401 Santa Monica, CCA 91405

Prepared By: Alliance Land Planning & Engineering, Inc. 2248 Faraday Ave. Carlsbad, CA 92008

OCTOBER 13, 2020 JN 1934

TABLE OF CONTENTS

PROJECT DESCRIPTION	.1
METHODOLOGY	.1
EXISTING CONDITION	.1
DEVELOPED CONDITION	.2
UNDERGROUND INFILTRATION CHAMBERS	.2
DRAWDOWN	.2
USMP SPECIFIC REQUIREMENTS	.3
HYDROMODIFICATION NATURAL AREAS	.3
STORMWATER POLLUTANTS OF CONCERN POLLUTANT REMOVAL	
SLOPES AND CHANNELS	.3
STORM DRAIN SYSTEM STENCILING OUTDOOR MATERIAL STORAGE AREAS	
PROPERLY DESIGN TRASH STORAGE AREAS	
BMP MAINTENANCE (O&M) CONCLUSION	

APPENDICES

- **Appendix A** HydroCalc & Low Flow Storm Drain (FlowMaster)
- **Appendix B** Infiltration Report
- **Appendix C** O & M Manual for Underground Infiltration Chamber
- Appendix D Developed Condition USMP/LID Exhibit

PROJECT DESCRIPTION

The proposed residential development project for the MetroWalk community is approximately 20.4 acres and includes senior apartments, townhomes, a private park, a recreation center, landscaping, and hardscape. The MetroWalk community is considered a Designated Project because it disturbs more than one acre of land and is adding more than 10,000 square feet of impervious surface area. The project site is currently undeveloped land. MetroWalk is bordered by Lost Canyon Road to the West, Harriman Drive/Vista Canyon Apartments to the North, and the MTA railroad on the South. The property is 20.4 acres in size, but 2.2 acres of the property is Lost Canyon Road and Harriman Drive which is already constructed and treated yielding 18.2 acres onsite development.

The projects private drainage system connects to the existing 42" storm drain MTD 1851 in the northwest corner of the site that ultimately outlets into the Santa Clara River. MTD 1851 is a City/County owned and maintained storm drain line.

METHODOLOGY

Storm Event	= 85 th %
85 th % rainfall depth	= 0.92"
Soil Classification Area	= 020

HydroCalc software approved by the City/County was used to calculate the required stormwater quality design volume (SWQDv) and stormwater quality design flowrate (SWQDf) as prescribed per the Low Impact Development (LID) Standards Manual of the County of Los Angeles, Department of Public Works (LACDPW). The 85th percentile design storm of 0.92 inches is determined from the LA County 85th Percentile Analysis Google Earth .KMZ file. The Soil Classification of 020 was acquired from the Mint Canyon 50-yr, 24-hr Isohyetal map. See appendix A for the full HydroCalc output.

EXISTING CONDITION

The project site currently drains in a northwest direction and into an existing 42" RCP storm drain (MTD 1851) which was constructed as part of the Vista Canyon development and will be owned/maintained by the County of Los Angeles once it is transferred by the City of Santa Clarita. The existing capacity of the 42" storm drain is 98.8 cfs. The MetroWalk project site was included in the original hydrology report for which MTD 1851 was designed.

A desilting basin exists at the inlet to the 42" storm drain to collect debris from the natural condition site and the undeveloped MTA property. Once the MetroWalk

MetroWalk USMP/LID Report

project is constructed the desilting basin will be eliminated as debris will no longer be deposited to this location.

DEVELOPED CONDITION

In the developed condition, all runoff from the project will be captured in private storm drain lines and routed through an underground storm drain system. Before the system outlets into the existing 42" storm drain per MTD 1851, a diverter (splitter) box will route the required low flow volume to an underground water quality infiltration chamber while letting the high flow continue on to MTD 1851. The low flow pipe is sized to convey the water quality flow into the underground chamber.

UNDERGROUND INFILTRATION CHAMBERS

Infiltration will be the method for water quality treatment for this project. Per Infiltration report provided in appendix B, a raw percolation rate of 4 in/hr has been prescribed. The soils engineer has applied a safety factor to the infiltration rate of 4 in/hr for the natural soil at the project and reduced it to 0.6 in/hr for design purposes.

The design and performance data for the proposed infiltration basin are provided in the table below.

WQT Volume Required (SWQDv)	43,644	cf
Underground Chamber Volume Provided	43,798	cf
Required Low Flow (SWQDf)	2.29	cfs
10" Pipe @ 0.9%	2.30	cfs

DRAWDOWN

In the drawdown calculation below, to account for long-term performance, the factored infiltration rate of 0.6 in/hr has been used for this drawdown calculation.

INFILTRATION BASIN	VOLUME REQUIRED (1)	SURFACE AREA AT BOTTOM (2)	MINIMUM FACTORED INFILTRATION RATE * (3)	FLOWRATE (4) = (2) x [(3) / 12"]	DRAWDOWN TIME (5) = (1) / (4)	
	cf	sf	in/hr	cf/hr	hr	
А	43,643.5	12,848	0.6	642.4	67.94	

DRAWDOWN TABLE - 96 HR DRAWDOWN CALCULATION

USMP SPECIFIC REQUIREMENTS

The following list discusses additional aspects of the project's SUSMP specific requirements:

HYDROMODIFICATION

This project discharges to MTD 1851 which is a County owned/maintained storm drain line and therefore per City/County stormwater policy the project is exempt from hydromodification.

NATURAL AREAS

The existing desilting basin was graded as part of the Vista Canyon Project and MTD 1851. The rest of the existing site consists of natural earth and vegetation (weeds).

STORMWATER POLLUTANTS OF CONCERN

The primary pollutants of concern anticipated for this project are associated with landscaped areas, private driveways, and residential buildings.

Pollutants of concern:

Pathogens; nutrients; pesticides; organic compounds; oxygen demanding substances; trash and debris; oils and grease; sediments; and metals. No legacy pollutants are present.

Pollutants shall be removed via the underground infiltration chamber described above.

POLLUTANT REMOVAL

The infiltration basin will remove pathogens, nutrients, pesticides, organic compounds, oxygen demanding substances, trash and debris, oils and grease, sediments, and metals by filtering the runoff though natural earth/soil prior to entering the underground aquifer.

SLOPES AND CHANNELS

There are no significant natural slopes or channels that exist on-site.

STORM DRAIN SYSTEM STENCILING

Multiple Catch Basins are proposed for this MetroWalk project. "NO DUMPING. DRAINS TO RIVER" stencils will be painted at the catch basin drain locations per the provided USMP Map.

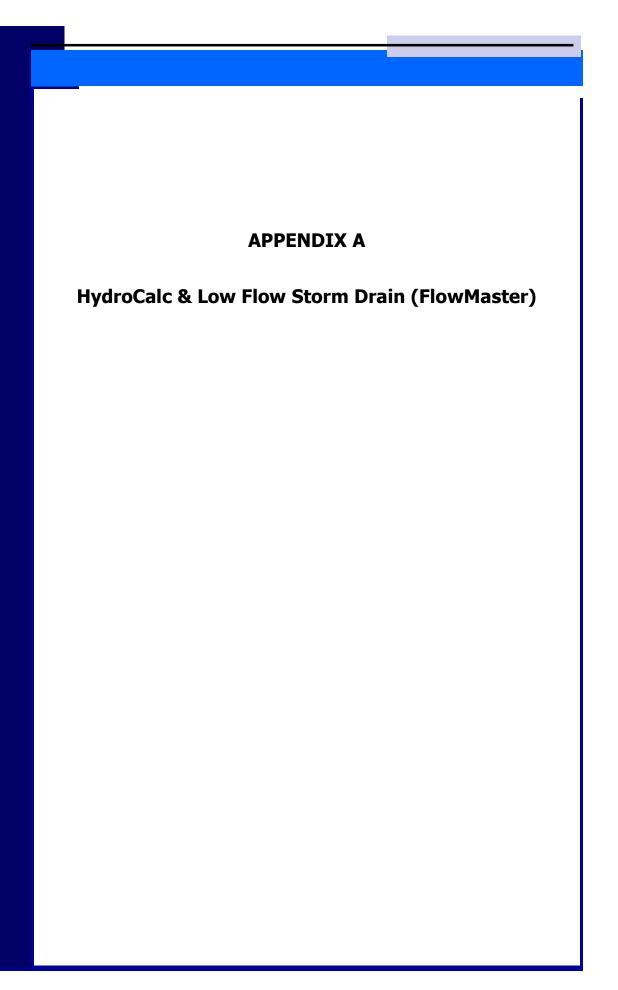
OUTDOOR MATERIAL STORAGE AREAS

No outdoor material storage areas are proposed for this project.

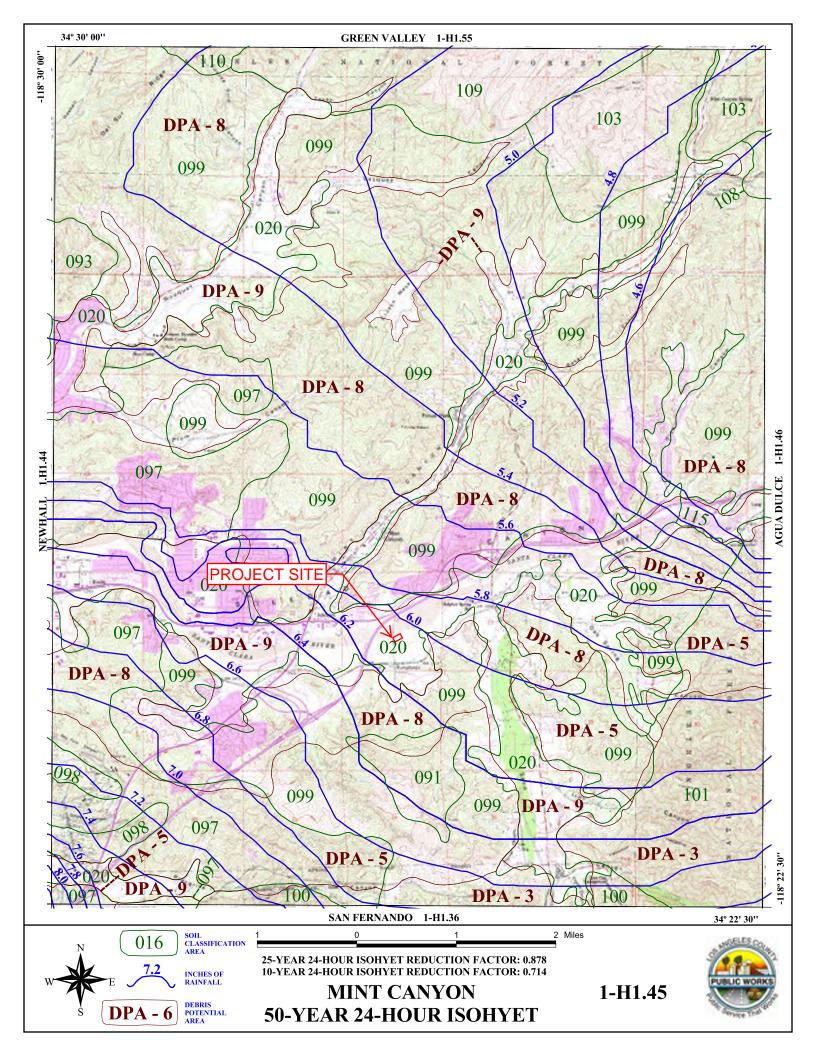
PROPERLY DESIGN TRASH STORAGE AREAS

No outdoor trash storage areas are designed for this project.

LANDSCAPE IRRIGATION PRACTICES


Landscaped areas are designed to minimize/eliminate runoff and the need for fertilizer/pesticides. Landscaped areas are designed to include comprehensive irrigation systems that only water areas as needed to ensure healthy vegetation growth.

BMP MAINTENANCE (O&M)


An operation and maintenance manual for the proposed underground infiltration chamber is provided in Appendix C of this report.

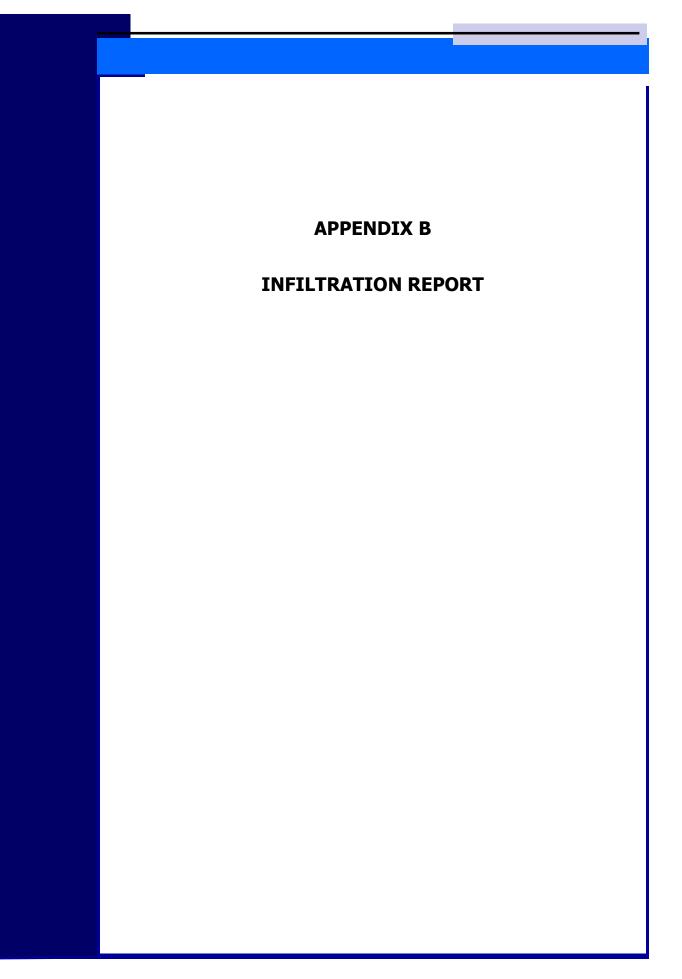
CONCLUSION

This report concludes that the MetroWalk project is considered acceptable for development in terms of water quality design. All areas of development will be treated per methods outlined by the City of Santa Clarita and the County of LA. The proposed underground infiltration chamber will treat the project's required water quality runoff volume and hydromodification requirement are satisfied due to direct discharge into the existing storm drain system of MTD 1851.

Peak Flow Hydrologic Analysis File location: I:/Project Files/1934 - METROWALK (CLOYD)/WQT/1934 - METROWALK (CLOYD) WQT - 1A.pdf Version: HydroCalc 1.0.3 **Input Parameters Project Name** 1934 - METROWALK (CLOYD) WQT Subarea ID 1A 18.2 Area (ac) Flow Path Length (ft) 1695.0 Flow Path Slope (vft/hft) 0.015 85th Percentile Rainfall Depth (in) 0.92 **Percent Impervious** 0.78 Soil Type 20 **Design Storm Frequency** 85th percentile storm Fire Factor 0 LID True **Output Results** Modeled (85th percentile storm) Rainfall Depth (in) 0.92 Peak Intensity (in/hr) 0.1735 Undeveloped Runoff Coefficient (Cu) 0.1 Developed Runoff Coefficient (Cd) 0.724 Time of Concentration (min) 58.0 Clear Peak Flow Rate (cfs) 2.2856 Burned Peak Flow Rate (cfs) 2.2856 24-Hr Clear Runoff Volume (ac-ft) 1.0019 24-Hr Clear Runoff Volume (cu-ft) 43643.4693 Hydrograph (1934 - METROWALK (CLOYD) WQT: 1A) 2.5 2.0 1.5 Flow (cfs) 1.0 0.5 0.0 200 400 600 800 1000 1200 1400 1600 Time (minutes)

METROWALK LOW FLOW SPLITTER

Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.00900	ft/ft
Normal Depth		0.84	ft
Diameter		0.84	ft
Results			
Discharge		2.30	ft³/s
Flow Area		0.55	ft²
Wetted Perimeter		2.64	ft
Hydraulic Radius		0.21	ft
Top Width		0.00	ft
Critical Depth		0.68	ft
Percent Full		100.0	%
Critical Slope		0.00930	ft/ft
Velocity		4.15	ft/s
Velocity Head		0.27	ft
Specific Energy		1.11	ft
Froude Number		0.00	
Maximum Discharge		2.47	ft³/s
Discharge Full		2.30	ft³/s
Slope Full		0.00900	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		100.00	%
Downstream Velocity		Infinity	ft/s


 Bentley Systems, Inc.
 Haestad Methods SolibéintheQdriterr
 Master V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

METROWALK LOW FLOW SPLITTER

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.84	ft
Critical Depth	0.68	ft
Channel Slope	0.00900	ft/ft
Critical Slope	0.00930	ft/ft

File No. 2445-04

August 6, 2020

Jonathan Frankel New Urban West, Inc. 2001 Wilshire Blvd., Ste. 401 Santa Monica, CA 90403

Subject: <u>GEOTECHNICAL INVESTIGATION FOR SUSTAINABLE</u> <u>COMMUNITIES ENVIRONMENTAL ASSESSMENT ("SCEA")</u> Proposed Multi Family Residential Development Intersection Of Lost Canyon Road & Harriman Drive Canyon Country - Santa Clarita, CA 91387 APN: 2840-004-009

Dear Mr. Frankel,

Feffer Geological Consulting is pleased to submit the following preliminary Geotechnical Investigation Report for the proposed development located in the City of Santa Clarita, California. This report is prepared to supplement the draft Sustainable Communities Environmental Assessment ("SCEA") for this project.

We appreciate the opportunity to be of service. Should you have any questions regarding the information contained in this report, please do not hesitate to contact us.

Sincerely FEFFER GEOLOGICAL CONSULTING, INC. Joshua R. Feffer Dan Daneshfar No. 2138 Principal Engineering Geolog **Principal Engineer** Centerd P.E. 68377 C.E.G. 2138 Engineering Geologist 7(CAL Distribution: Addressee-(1)

TABLE OF CONTENTS

1.0 Introduction 1.1 Purpose	
1.2 Scope of Services	4
1.3 Site Description	5
1.4 Proposed Construction	5
1.5 Document Review	5
2.0 Investigation	
2.2 Field Exploration	9
2.3 Laboratory Testing	9
3.0 Site Geology, Seismicity, Potential Hazards	
3.2 Seismicity	11
3.2.1 Seismic Hazards	11
3.2.2 Earthquake Faults	12
3.2.3 Secondary Ground Effects	12
3.3 CBC Building Code Considerations	13
4.0 Geotechnical Considerations	
4.2 Settlement	15
4.3 Expansive Soil	15
4.4 Soil Erosion and Loss of Topsoil	15
4.5 Slope Stability	15
5.0 Conclusions and Preliminary Design Recommendations 5.1 Site Suitability	
5.2 Earthwork	16
5.3 Foundation Support	17
5.4 Retaining Walls	19
5.5 Temporary Excavations	19

5.6 Exterior Flatwork and Auxiliary Structures	21
5.7 Concrete/Sulfate/Corrosivity	21
5.8 Soil Corrosivity	22
5.9 Pavement Design	22
5.10 Drainage	23
5.11 Plan Review	23
5.12 Agency Review	23
5.13 Supplemental Consulting	23
5.14 Project Safety	24

6.0 References Cited	25
----------------------	----

Attached:

Figures, Site Map, and Cross Sections
Appendix A 'Excavation Logs'
Appendix B 'Laboratory Testing and Engineering'
Appendix C 'Conceptual Plans'
Appendix D 'Grading Specifications'

1.0

INTRODUCTION

1.1 <u>PURPOSE</u>

As requested, Feffer Geological Consulting has completed a preliminary Geotechnical Investigation for the proposed development. The purpose of this investigation is to evaluate the geotechnical conditions at the site in the areas of the proposed construction and provide geotechnical parameters and preliminary recommendations for future design and development. This report is prepared as a technical appendix for the project's draft SCEA.

Based on our investigation, it is our opinion that the proposed construction is feasible from a geotechnical standpoint. When final plans for the proposed construction become available, they should be reviewed by the project soils engineer and engineering geologist of record. A separate geotechnical report will be prepared to provide design level values for development once plans have been finalized.

1.2 <u>SCOPE OF SERVICES</u>

The scope of work performed during this investigation involved the following;

- Research and review of available pertinent geotechnical literature and previous reports for the project site;
- Field Exploration & Testing
 - Subsurface exploration consisting of the drilling of seven borings (B1, B2, B3, B4, B5, B6, B7) the advancement of six cone penetrometer test (CPT) soundings (CPT1, CPT2, CPT3, CPT4, CPT5, CPT6) and the excavation of four test pits (TP1, TP2, TP3, TP4);
 - Sampling and logging of the subsurface soils;
 - Laboratory testing of selected soil samples collected from the subsurface exploration to determine the engineering properties of the underlying earth materials;
 - Engineering and geologic analysis of the field and laboratory data;
- Compliance with *CEQA Appendix G* and an assessment of:
 - Rupture of a known earthquake
 - Strong seismic ground shaking
 - Seismic-related ground failure
 - Landslides
 - Soil erosion or loss of topsoil
 - Unstable geologic unit or soils
 - Expansive soils
 - Support of septic tanks or alternative waste systems
- Preparation of this report presenting our findings, conclusions, and preliminary recommendations for the proposed construction.

1.3 <u>SITE DESCRIPTION</u>

The subject site is located on the east side of Lost Canyon Road at its intersection with Harriman Drive in the Canyon Country area of the City of Santa Clarita, CA. The subject consists of an undeveloped approximately 20 acre irregularly shaped parcel of land. The site is bounded by Lost Canyon Road to the west, Harriman Drive to the north, and Metro Railway lines to the south and east.

The site has approximately twenty feet of overall elevation change and gently descends to the south and southeast with an approximate gradient of 12:1 (horizontal to vertical) or gentler. A graded 2:1 (horizontal to vertical) slope is present along the western portion of the site associated with the extension and construction of Lost Canyon Road and ranges in height from twenty to thirty feet. Figure 1 is a map illustrating the site location. Figure 2 is an aerial photograph with a topographic overlay of the site and vicinity.

1.4 **PROPOSED CONSTRUCTION**

It is our understanding that the proposed project will consist of the construction of 150 non-age restricted three-story townhomes, 179 non-age restricted apartments, 119 age-qualified apartments, and 50 deed restricted affordable senior apartments. The extent of development is illustrated on conceptual development plans included in Appendix C.

Final plans including structure heights, specific building footprints, and subterranean depths are still within the development phase and will be updated upon final project design. However, preliminary recommendations are based on the proposed maximum tower heights, subterranean depths, and loading factors. The findings and recommendations within this report are adequate to support the analysis of the project's potential geotechnical impacts.

1.5 **DOCUMENT REVIEW**

City files were researched and previous work on the project site and surrounding area was evaluated for use by this firm. Several reports are referenced but were not located within the city files. The following reports were used to supplement the findings of this investigation:

Reports for the Subject Site and Site to the North:

Assessor's Parcel Nos. 2840-004-009 and 2840-004-010

Geotechnical Constraints Investigation Cloyd Property Assessor's Parcel Nos. 2840-004-009 and 2840-004-010 Santa Clarita, California by RTF & A Geotechnical Engineering & Engineering Geology, dated June 29, 2007

Reports for the Property to the North:

Tentative Tract Map No. 69164 & 69164-01 Assessor's Parcel No. 2840-004-010

Geotechnical Report VOLUME I OF II For Tentative Tract Map No. 69164 Canyon Country, California Volume I Of II For Vista Canyon Ranch, Llc by RTF & A Geotechnical Engineering & Engineering Geology, dated November 14, 2008

Geotechnical Report VOLUME I OF II For Tentative Tract Map No. 69164 Canyon Country, California Volume II Of II For Vista Canyon Ranch, Llc by RTF & A Geotechnical Engineering & Engineering Geology, dated November 14, 2008 (referenced but not found in files)

Report of Rough Grading Plan Review Volume 1 Of 2 Vista Canyon Tract No. 69164 Santa Clarita, California by RTF & A Geotechnical Engineering & Engineering Geology, dated January 6, 2015

Report of Rough Grading Plan Review Volume 2 Of 2 Vista Canyon Tract No. 69164 Santa Clarita, California by RTF & A Geotechnical Engineering & Engineering Geology, dated January 6, 2015

Response to City of Santa Clarita Review Comments City Case # SOL12-00025 Vista Canyon, Tract No. 69164 Santa Clarita, California by RTF & A Geotechnical Engineering & Engineering Geology, dated March 30, 2015

Bulk Grading Plan Review Vista Canyon Phase 2 Santa Clarita, California For Vista Canyon Ranch, Llc by RTF & A Geotechnical Engineering & Engineering Geology, dated NOVEMBER 9, 2015

Geotechnical Report of Observation and Testing and As-Built Geologic Report Phase I Bulk Grading Proposed Vista Canyon Ranch Development Southwestern Portion of Tract Map No. 69164 Santa Clarita, California by RTF & A Geotechnical Engineering & Engineering Geology, dated April 28, 2016

Engineered Grading Consultant Certification Phase I Bulk Grading Proposed Vista Canyon Ranch Development Southwestern Portion of Tract Map No. 69164 Santa Clarita, California by RTF & A Geotechnical Engineering & Engineering Geology, dated July 11, 2016

Geotechnical Grading Plan Review SCRRA Right-of-Way Grading and Drainage Exhibit Vista Canyon Phase 2, Tract No. 69164-01 Santa Clarita, California by RTF & A Geotechnical Engineering & Engineering Geology, dated December 8, 2016

Geotechnical Report of Observation and Testing and As-Built Geologic Report Phase 2 I PA-3 Portion of Bulk Grading Lots 6, 8-14, 16, and 17 Proposed Vista Canyon Ranch Development Northeastern Portion of Tract Map No. 69164 Santa Clarita. California by RTF & A Geotechnical Engineering & Engineering Geology, dated March 18, 2019

Report Of Observation And Testing Services During Grading Of Building Pads 1 & 2 Vista Canyon Apartments 17270 Mitchel Drive, Santa Clarita, California Tract: 69164-01, Lot: 3-5 Rough Grading Permit No. Gra17-00056 Precise Grading Permit No. Gra17-00057 by Geocon West Inc. dated May 7, 2019

Report Of Observation And Testing Services During Grading Of Building Pads 2 Through 11 Vista Canyon Apartments 17350 Humphreys Parkway And 17270 Mitchel Drive Santa Clarita, California Tract: 69164-01, Lot: 3-5 Rough Grading Permit No. Gral 7-00056 Precise Grading Permit No. Gral 7-00057 by Geocon West Inc. dated April 18, 2019

Tract 45023 To West of the Subject Site:

Reports by Allan E. Seward Engineering Geology, Inc.: Geologic/Geotechnical Investigation Report, Proposed Lost Canyon Road Overpass Tr. 45023, dated December 10, 1998

Geologic/Geotechnical Report, Grading Plan for Tract 45023, Phases I and II, The Colony, dated September 21, 1999

Geotechnical Engineering Investigation, Proposed Residential Development, File No. 17520-S, dated January 7, 2000.

Geotechnical Engineering Investigation, Proposed Offsite Grading, File No. 17468-S, dated January 24, 2000.

County of Los Angeles Department of Public Works Correspondence: Geologic Review Sheet dated February 17, 2000.

Soils Engineering Review Sheet dated February 25, 2000.

Response to County of Los Angeles Review Canyon Park Boulevard, Lost Canyon Road, Jakes Way, and Phase III Grading, Santa Clarita, California by Jerry Kovacs and Associates, Inc. dated April 21, 2000

Response to County of Los Angeles Review, Private Drain 2496, Tract 45023 Santa Clarita, California by Jerry Kovacs and Associates, Inc. dated May 1, 2000

Second Response to County of Los Angeles Review Canyon Park Boulevard, Lost Canyon Road, Jakes Way, and Phase III Grading, Santa Clarita, California, by Jerry Kovacs and Associates, Inc. dated June 6, 2000

Addendum to June 28, 2000, Response to County of Los Angeles Review Private Drain 2496, Tract 45023, MTA Railroad Right-of-Way Santa Clarita, California by Jerry Kovacs and Associates, Inc. dated July 20, 2000

*Our company name has been changed to Geotechnologies, Inc. We have been operating as Jerry Kovacs and Associates, Inc. since 1992 and Kovacs-Byer and Associates since 1971. Extension of Jakes Way and Lost Canyon Road Tract: 45023, Santa Clarita, California by Geotechnologies, Inc. Consulting Geotechnical Engineers dated April 16, 2001

Revised Foundation Recommendations Proposed Residential Development Tract: 45023, Phase II, Lots: 1 - 9, Santa Clarita, California by Geotechnologies, Inc. Consulting Geotechnical Engineers dated January 14, 2002

2nd Response to County of Los Angeles Review Offsite Grading Plan for Tract No. 45023, Grading Permit No. 99-0811-0001 Area of Proposed Lost Canyon Road and Bridge Over Southern Pacific Railroad Tracks, Santa Clarita, California by Geotechnologies, Inc. Consulting Geotechnical Engineers dated March 14, 2002, Revised March 15, 2002

Updated Retaining Wall Recommendations Offsite Grading Plan for Tract No. 45023, Grading Permit No. 99-0811-0001 Area of Proposed Lost Canyon Road and Bridge Over Southern Pacific Railroad Tracks, Santa Clarita, California by Geotechnologies, Inc. Consulting Geotechnical Engineers dated March 22, 2002

3rd Response to County of Los Angeles Review Offsite Grading Plan for Tract No. 45023, Grading Permit No.99-0811-0001 Area of Proposed Lost Canyon Road and Bridge Over Southern Pacific Railroad Tracks, Santa Clarita, California by Geotechnologies, Inc. Consulting Geotechnical Engineers dated June 10, 2002

Update of Geotechnical Engineering Investigation Proposed Residential Development, Tract 45023, Phase III Santa Clarita, California by Geotechnologies, Inc. Consulting Geotechnical Engineers dated July 29, 2003

Statement Regarding Restricted Use Areas Proposed Residential Development, Tract 45023, Phase III Santa Clarita, California by Geotechnologies, Inc. Consulting Geotechnical Engineers dated April 23, 2004

Compaction Report Proposed Residential Development 27404 Lost Canyon Road, Santa Clarita, California, (Tract 45023, Phase III) by Geotechnologies, Inc. Consulting Geotechnical Engineers dated June 16, 2004

Final Compaction Report 27404 Lost Canyon Road, Santa Clarita, California, (Tract 45023, Phase III) by Geotechnologies, Inc. Consulting Geotechnical Engineers dated August 30, 2005

Final Compaction Report Proposed Fire Lane 27404 Lost Canyon Boulevard, Canyon Country, California (Tract: 45023, Phase I and II) by Geotechnologies, Inc. Consulting Geotechnical Engineers dated March 3, 2009

Jerry Kovacs and Associates, Inc.-Geotechnologies, Inc. produced several reports for the proposed tract development (Phase I-III), a bridge over the Southern Pacific Railroad Tracks and subsequent grading of the site. The collective subsurface investigations consisted of drilling fifty borings and excavating six test pits to depths of ten and fifteen feet below the existing ground surface. The subsurface exploration encountered up to five feet of fill overlying alluvium. Ground water was not encountered. The reports stated that the alluvium was dense and stable and that new foundations should be placed on a new compacted fill cap. The reports were approved by the governing municipality. The tract has been constructed.

2.0

INVESTIGATION

2.1 <u>GENERAL</u>

Our field investigation was performed from April 15, 16, and July 6 and 7, 2020 and consisted of a review of site conditions and subsurface exploration involving the drilling of seven geotechnical borings, advancing six cone penetrometer tests (CPT's), excavating four test pits and soil sampling. The investigation also includes laboratory testing of selected soil samples. A brief summary of these various tasks is provided below.

2.2 FIELD EXPLORATION

The subsurface investigation performed at the site consisted of drilling seven borings by use of a truck-mounted hollow-stem auger drill rig to a maximum depth of 51.5 feet below the existing ground surface, advancing six cone penetrometer tests to a maximum depth of 50 feet below the existing ground surface and excavating four test pits by hand labor to a maximum depth of 17 feet below the existing ground surface.

The purpose of the exploratory borings, cone penetrometer tests, and test pits was to determine the existing subsurface conditions and to collect subsurface samples in the areas of the proposed construction and throughout the site. Earth materials encountered in the borings, CPT and test pits consisted of artificial fill and alluvium.

The earth materials encountered in the borings and test pits consisted of up to four feet of fill over alluvium. Areas of deeper fill may be present at the site but were not encountered in the recent exploration.

A review of geological maps indicates that the material underlying the subject site is comprised of Alluvium-Flood Plain Deposits (Qa-Qfp) (Figure 3 and 4).

The borings were logged by our field geologist using both visual and tactile means. Both bulk and relatively undisturbed soil samples were obtained for testing. The approximate locations of the borings are shown on the attached site map. Detailed boring and test pit logs are presented in Appendix A.

2.3 <u>LABORATORY TESTING</u>

Laboratory testing was performed on representative samples obtained during our field exploration. Samples were tested for the purpose of estimating material properties for use in subsequent engineering evaluations. Testing included in-place moisture and density, hydro-response-swell/collapse, maximum density, and shear strength testing.

A summary of the laboratory test results is included in Appendix B. The physical properties of the soils were tested at Soil Labworks, LLC and Smith-Emery Laboratories. Chemical testing was performed at HDR Schiff. The undersigned geologist and engineer have reviewed the data, concur, and accept responsibility for utilizing the data therein.

3.0 <u>SITE GEOLOGY, SEISMICITY, POTENTIAL HAZARDS</u>

3.1 <u>SITE GEOLOGY</u>

The site is located at the western end of the Soledad basin, within the Transverse Ranges geomorphic province of California. The Soledad basin consists of an elongate, northeast trending basin, measuring approximately 30 miles long and 8 to 12 miles wide. The floor of the basin is irregular, with elevations ranging from 400 feet mean sea level (msl) at its western end to as much as 2,500 feet near the eastern end.

The basin is bounded on the north, east, and south by ridges and mountain masses of relatively old crystalline rocks that, along with ancestral highland masses, have contributed large quantities of Cenozoic age sediments to the basin (Jahns and Muehlberger, 1954). More than 20,000 feet of stratified rocks were deposited into the elongate lowland area of the basin, with an additional $4,500\pm$ feet of volcanic rocks accumulated locally (Jahns and Muehlberger, 1954).

Structurally, the Soledad basin is a westerly plunging open syncline with locally wrinkled flanks (Bailey and Jahns, 1954). The basin appears to have been defined as a trough of deposition mainly by faults, receiving its sedimentary fill in a manner that was very irregular in detail.

Repeated episodes of primarily early Tertiary deformation, both within and along the margins of the basin are indicated by numerous faults, folds, and unconformities, as well as by the distribution and lithology of the sedimentary rocks (Jahns and Muehlberger, 1954). The early Miocene and younger strata of the basin, although maintaining the broadly synclinal structure, have been considerably less deformed (Bailey and Jahns, 1954). These deposits blanket many of the older faults of the basin, but are themselves offset by other faults, such as the nearby San Gabriel fault zone.

Regional Geologic Maps (Figure 3) and the subsurface exploration indicated that the subject site is underlain by Alluvium-Flood Plain Deposits (Qa-Qfp) overlain by a veneer fill (Dibblee and Ehrenspeck, 1996). Descriptions of the materials encountered in the exploratory borings are summarized below.

3.1.1 <u>Artificial Fill (Af)</u>

Fill is material that has been placed or disturbed by construction activity. The fill consists of fine to medium grained silty sand and sandy silt with gravel. The color varies from brown, to gray brown and is moist and firm to medium dense. The fill encountered varies in thickness between three to four feet below the ground surface but may locally be deeper.

3.1.2 <u>Alluvium-Flood Plain Deposits (Qa-Qfp)</u>

The alluvium is a Holocene to youngest Pleistocene alluvial unit which consists of fine to coarse grained silty sand and sandy silt with fine to coarse gravels, and varies in color from brown to yellow brown, olive brown, and dark brown. The alluvium is typically moist and moderately dense to dense. The alluvium is generally weakly stratified, moderately-well to poorly sorted and

oxidized with no significant structural planes. The alluvium is typically found to contain multiple fining upward sequences from coarse grained basal deposits.

3.1.3 Groundwater

Groundwater was not observed to a depth of 51.5 feet in the recent exploration at the subject site. Historically, highest groundwater in this area is shown as being between 5 and 10 feet below the ground surface (Figure 5) (Department of Conservation, 1998).

It should be noted that groundwater was encountered north of the project site in a previous exploration conducted by RTF&A (2008) at depths of twelve to fifty-two feet below the ground surface. This data is summarized in Table 1 in section 5.3.4.

3.2 <u>SEISMICITY</u>

A risk common to all areas of Southern California that should not be overlooked is the potential for damage resulting from seismic events (earthquakes). The project site is located within a seismically active area, as is all of Southern California.

As required by the City of Santa Clarita a site-specific seismic design for the proposed construction will be performed and reviewed by the City of Santa Clarita Community Development Planning Division for the project site.

3.2.1 <u>Seismic Hazards</u>

The State of California enacted the Alquist-Priolo Special Studies Act of 1972 immediately following the destructive 1971 San Fernando earthquake (Department of Conservation, 2020a). The Alquist-Priolo Act is intended to prohibit the location of most structures for human occupancy across a known active fault that intersects the ground surface, thereby mitigating fault-rupture hazard. The Alquist-Priolo Act requires that the State Geologist delineate "Earthquake Fault Zones" along active surficial faults. Development within these Earthquake Fault Zones must include geologic investigation demonstrating the absence of Holocene-active faults.

The California State Legislature passed the Seismic Hazards Mapping Act of 1990 and was signed into law and became effective in 1991 (Department of Conservation, 2020b). The Seismic Hazards Mapping Act was prompted following the 1989 Loma Prieta earthquake, and is intended to reduce the threat to protect public safety and minimize the loss of life and property from the effects of strong ground shaking, liquefaction, landslides, and other earthquake-related hazards (Department of Conservation, 2020b).

The Seismic Hazards Mapping Act and Alquist Priolo Act require the State Geologist to delineate "Earthquake Zones of Required Investigation (EZRI)." The EZRI maps are released by the California Geological Survey (CGS). Zone delineations are based on a combination of factors, including but not limited to: surface distribution of soil deposits and bedrock, slope steepness, depth to groundwater, bedding orientation with respect to slopes, and distance to local earthquake faults (seismic source). Following a rigorous review process the EZRI Map delineates areas that

have been subject to or are potentially subject to earthquake induced fault surface rupture, liquefaction, and landsliding. A discussion of the potential for these earthquake hazards is presented below.

3.2.2 <u>Earthquake Faults</u>

The site is located within a tectonically active area, as is all Southern California. The closest known fault capable of producing strong earthquakes and ground shaking is the San Gabriel Fault located approximately 1 mile southeast of the site. The site is not mapped within an Alquist Priolo Fault Zone and no known Holocene-active faults cross the project site (Figure 6). While the potential for surface rupture is low to non-existent, the site could be impacted by strong ground shaking should an earthquake occur along a nearby fault. A discussion of each fault is provided below.

San Gabriel Fault Zone:

The active San Gabriel fault zone, located approximately 1.5 miles southwest of the site, consists of a northwest-trending zone of imbricate steeply north-dipping faults. The fault has strong geomorphic expression characterized by displaced geologic units, deflected drainages, strike valleys, notched ridges, subparallel faulting, fracturing, and folding (Oakeshott, 1958; Wentworth and Yerkes, 1971). According to Oakeshott (1958), the zone of faulting ranges in width from a single plane with no more than a few inches of gouge, to a half-mile wide area of several fault planes, zones of brecciation, and complex steep-limbed folds. No known active faults project into or cross the site. The site is not located in a State of California Alquist-Priolo Earthquake Fault Zone. Faults confined to the Mint Canyon formation are mapped adjacent to the site on the east and southeast. These faults are part of the informally named Sulphur Springs fault. The Sulphur Springs fault is not considered active.

3.2.3 <u>Secondary Ground Effects</u>

The site is located within an area mapped by the CGS (1999) as being potentially affected by seismic-induced liquefaction but not landsliding (Figure 6). A discussion of secondary ground effects is included below.

Liquefaction

Liquefaction is a process which occurs when saturated sediments are subjected to repeated strain reversals during a seismic event. The strain reversals cause an increase in pore water pressure such that the internal pore pressure approaches the overburden pressure and the shear strength approaches a low residual value. Liquefied soils are subject to flow, consolidation, or excessive strain. Liquefaction typically occurs in loose to medium dense sand and silty sandy soils below the groundwater table. Predominately fine-grained soils, such as silts, and clay, are less susceptible to liquefaction. The site is included within a zone of potentially liquefiable soil (Department of Conservation, 1998). Liquefaction is considered a potentially significant hazard at the site and liquefaction induced settlement may affect the subject site. A site-specific liquefaction analysis will be performed per Recommended Procedures of Implementation of CGS Special Publication

117A, Guidelines for Analyzing and Mitigating Liquefaction in California (Parrish, 2008). To reduce the risk of liquefaction induced settlement to a less than significant level the Guidelines for Mitigating Seismic Hazards (Chapter 7; Parrish, 2008) will be followed. As discussed in the guidelines, ground improvement (i.e., removal and recompaction of soil, vibrocompaction) and structural solutions (i.e., mat foundations, pile and grade beams) are acceptable methods of mitigation.

Prior to building permit issuance, the Project applicant shall prepare a project specific liquefaction settlement analysis that shall include design features to achieve performance standard pursuant to Recommended Procedures of Implementation of CGS Special Publication 117A, Guidelines for Analyzing and Mitigating Liquefaction in California (Parrish, 2008) and to the satisfaction of the City of Santa Clarita's Department of Building and Safety. These binding measures will reduce liquefaction induced settlement to a less than significant level.

Lateral Spreading Hazard

Saturated soils that have experienced liquefaction may be subject to lateral spreading where located adjacent to free faces, such as slopes, channels, and rivers. The site is remote to free-faces and the lateral spreading hazard at the site is insignificant.

<u>Subsidence</u>

According to the City of Santa Clarita Safety Element (2011), land subsidence is recognized as the gradual settling or sinking of the ground surface over a long period of time with little to no horizontal motion. Typically, subsidence is the result of excessive extraction of groundwater, oil, or gas but may occur due to strong ground shaking from earthquakes. Long term affects of subsidence can include structural impacts such as cracked pavement/landscaping, fractured building foundations, and dislocated pipe joints.

In order to mitigate potential localized land subsidence to an acceptable level, specific ground improvement systems should be implemented (i.e., removal and recompaction of soil, vibrocompaction) in combination with structural solutions (i.e., mat foundations, pile and grade beams).

<u>Landsliding</u>

According to mapping by the CGS (1999), the project site is not located within an area subject to potential seismic-induced slope instability (Figure 6). Since the site is not located within a mapped landslide zone, and no slopes exist on or within the immediate site vicinity, seismic induced lansliding is not a significant hazard to the future development.

Tsunamis/Seiches

The project site is located approximately twenty-five miles northeast of the Pacific Ocean and onehalf mile south of the Santa Clarita river. Due to the sites distance from the coastline and other large bodies of water, the potential for tsunamis/seiches is considered low. Additionally, the subject site is not downstream of any dams.

3.3 <u>2019 CALIFORNIA BUILDING CODE CONSIDERATIONS</u>

The proposed development may be designed in accordance with seismic considerations contained in the 2019 California Building Code, Section 1613. The following parameters may be considered for design of foundations within the alluvium or future compacted fill (ATC, 2020):

A ground motion hazard analysis is required (see Section 11.4.8 of ASCE /SEI 7-16) to be performed in accordance with Section 21.2 for structures on Site Class D with S1 greater than or equal to 0.2. However, as an alternative of performing the ground motion hazard analysis, a long period coefficient (Fv) of 1.7 may be utilized for calculation of Ts, provided that the value of the Seismic Response Coefficient (Cs) is determined by Equation 12.8-2 for values of the fundamental period of the building (T) less than or equal to 1.5 Ts, and taken as 1.5 times the value computed in accordance with either Equation 12.8-3 for T greater than 1.5 Ts and less than or equal to TL or Equation 12.8-4 for T greater than TL.

Mapped Spectral Response Acceleration Parameters:

	S_S	:	2.226g
	\mathbf{S}_1	:	0.807g
Site Class:	D	:	Stiff Soil
Site Coefficients:	F_a	:	1.0
	$F_{\rm v}$:	1.7

Maximum Considered Earthquake Spectral Response Acceleration Parameters:

S_{MS}	:	2.226g
S_{M1}	:	1.372g

Design Spectral Response Acceleration Parameters:

S_{DS}	:	1.484g
S_{D1}	:	0.915g
PGA	:	0.941
PGA _M	:	1.035

4.0

GEOTECHNICAL CONSIDERATIONS

4.1 <u>SUBSURFACE SOIL CONDITIONS</u>

Subsurface materials at the project site consist of a layer of fill over alluvium. Based on laboratory testing the alluvium at the project site is competent and capable of supporting engineered structures and appurtenances. The following sections provide a general discussion about settlement and expansive soil activity.

4.2 <u>SETTLEMENT</u>

Settlement, or consolidation, occurs over time as a response to changes in pressure and soils stress. Our investigation indicates that the consolidation and hydrocollapse potential of the alluvium is low. The in-situ dry densities are high for the samples taken at the foundation level and it is our experience that these soils have a very low potential for consolidation.

4.3 EXPANSIVE SOIL

Typically, soils that contain a high clay content are susceptible to expansion/contraction. Clay minerals are capable of absorbing water, which causes an increase in volume and leads to expansion. The opposite effect occurs when clay rich soils dry out, thus decreasing in volume and contracting. The on-site soil was found to possess low to medium expansive characteristics based upon field soil classifications. Based on the recommended foundation systems and the underlying soil properties, expansion/contraction is unlikely to affect the proposed development.

4.4 <u>SOIL EROSION & LOSS OF TOPSOIL</u>

Only trace naturally occurring developed topsoil is exposed, and therefore is not at risk of substantially eroding due to proposed future development. During excavation soil will be exposed, however, engineered best management practices will be in place to mitigate and the potential hazard is considered low.

4.5 <u>SLOPE STABILITY</u>

The project site is not located within an area subject to potential seismic-induced slope instability. The site has approximately twenty feet of overall elevation change and gently descends to the south and southeast with an approximate gradient of 12:1 (horizontal to vertical) or gentler. A graded 2:1 (horizontal to vertical) slope is present along the western portion of the site associated with the extension and construction of Lost Canyon Road and ranges in height from twenty to thirty feet high. The 2:1 slope was graded as part of roadway construction and was compacted and inspected during development and approved. There are no significant slopes on the subject site and no potential for slope instability.

5.0 <u>CONCLUSIONS AND PRELIMINARY DESIGN RECOMMENDATIONS</u>

Conclusions and preliminary recommendations contained herein are based upon information provided, information gathered, laboratory testing, engineering, geologic evaluations, experience, and judgment.

Preliminary design values are provided within to meet requirements for the associated Environmental Impact Report and to assess the feasibility of development using conventional construction methods and best practices. The following preliminary values are for the assessment of construction feasibility and should not be used for final design. A separate geotechnical report will be prepared to provide design level values for development once plans have been finalized.

5.1 <u>SITE SUITABILITY</u>

The Geotechnical exploration, analyses, experience, and judgment result in the conclusion that the proposed development is suitable from a geotechnical standpoint.

It is our opinion that the project site can be developed as proposed without adverse geologic impact on adjoining properties. Safe project development will require strict adherence to good construction practices, agency and code requirements, and the recommendations in this report.

It should be realized that the purpose of the seismic design utilizing the above parameters is to safeguard against major structural failures and loss of life, but not to prevent damage altogether. Even if the structural engineer provides designs in accordance with the applicable codes for seismic design, the possibility of damage cannot be ruled out if moderate to strong shaking occurs as a result of a large earthquake. This is the case for essentially all structures in Southern California.

5.2

EARTHWORK

5.2.1 <u>General</u>

Grading should be done in accordance with good construction practice, minimum code requirements, and recommendations to follow. Grading criteria are included within Appendix D.

5.2.2 <u>Site Preparation and Grading</u>

Based on our understanding of the proposed development, laboratory testing, and experience, we recommend that foundations for the proposed development be founded in a future compacted fill cap.

Prior to the start of grading operations, utility lines within the project area, if any, should be located and marked in the field so they can be rerouted or protected during site development. All debris and perishable material should be removed from the project site. Although currently not anticipated, all permanent cut and fill slopes should not be constructed steeper than 2:1.

If fill is to be placed, the upper six to eight inches of surface exposed by the excavation should be scarified; moisture conditioned to two to four percent over optimum moisture content and compacted to 90 percent relative compaction¹. If localized areas of relatively loose soils prevent proper compaction, over-excavation and re-compaction will be necessary.

5.2.3 <u>Excavation Characteristics</u>

The borings encountered competent earth material at the depth of the proposed construction and below. However, the soil at the site has considerable amounts of sand and gravel and caving may occur in some excavations. Based on the underlying geology, excavation can be completed using standard methods and best practices.

5.2.4 <u>Use of Existing Soil</u>

The existing soil can be used for the future compacted fill.

5.3 <u>FOUNDATION SUPPORT</u>

5.3.1 Foundation

A site-specific geotechnical investigation should be conducted to determine the appropriate type, or types, of foundation systems to use for the proposed development. Such systems may include the removal and recompaction of soil, mat foundations, pile foundations, grade beams or any combination thereof as determined by the appropriate geotechnical engineer.

The design level investigation should consider all relative potential geologic hazards to develop specific foundation recommendations. Based on a preliminary analysis, it is our opinion that site development can move forward if appropriate foundation recommendations and structural designs are implemented to mitigate all potential geologic hazards

5.3.2 <u>Infiltration/SUSMP/LID</u>

Percolation testing consisted of performing multiple in-situ falling head tests in the field, which is consistent with industry standard of practice for similar projects in the Southern California area (LADPW, 2014). The test pits were excavated on July 6, 2020 and infiltration testing was performed July 7, 2020.

All test pits were excavated by hand labor. Test pit one (TP-1) was excavated to a total depth of five feet. The bottom foot of the test pit consisted of a one-foot cube. Test pit two (TP-2) was excavated to a total depth of ten feet. Test pit three (TP-3) and four (TP-4) were excavated to a total depth of seventeen feet. Each test pit was filled with water to pre-soak on July 6, 2020. No

¹ Relative compaction refers to the ratio of the in-place dry density of soil to the maximum dry density of the same material as obtained by the "modified proctor" (ASTM D1557-14) test procedure.

water remained on the testing date of July 7, 2020. Multiple tests occurred until the measured rate stabilized within 10% of 3 successive tests.

The following table is a summary of the preliminary infiltration results. Allowable infiltration rates should be 15% of the values shown on the table below for each area tested. Additional testing may be required depending on the final proposed design.

Test Excavation	Total Depth (ft.)	Rate (in./hr)
TP-1	5'	4"
TP-2	10'	24"
TP-3	17'	22.5"
TP-4	17'	24"

5.3.3 <u>Wastewater Disposal</u>

The proposed development will not require the use of septic tanks or alternative wastewater disposal systems. Since sewers will be used for the disposal of wastewater, there will be no impact to the underlying supporting materials from the disposal of wastewater.

5.3.4 Groundwater and Associated Design

According to records, the highest historic groundwater level is located below the proposed foundations (Department of Conservation, 1998). Wet conditions and actual groundwater may be encountered due to seasonal fluctuations.

Groundwater was encountered in six borings north of the subject site in an earlier exploration conducted by RTF&A (2008). This data is summarized in Table 1. No surface water or seeps were observed.

Consultant	Boring	Depth to Groundwater	Date
RTF&A	HS-1	44	5/31/07
	B-1	17	12/7/05
	B-3	12	12/7/05
	B-4	15	12/7/05
	B-5	34	12/7/05
	B-6	52	12/12/05

Table 1.

5.4

RETAINING WALLS

5.4.1 <u>Retaining Wall</u>

Retaining walls up to six feet high that support fill, alluvium, and approved retaining wall backfill, may be designed for an equivalent fluid pressure of 30 pounds per cubic foot for level backslopes.

Retaining walls should be provided with a subdrain or weepholes covered with a minimum of 12 inches of ³/₄ inch crushed gravel.

It is recommended that retaining walls be waterproofed. Waterproofing design and inspection of its installation is not the responsibility of the geotechnical engineer. A qualified waterproofing consultant should be retained in order to recommend a product or method, which would provide protection to below grade walls.

5.4.2 <u>Retaining Wall Backfill</u>

Retaining wall backfill should be compacted to a minimum of 90 percent of the maximum density as determined by ASTM D 1557-14. It should be pointed out that the use of heavy compaction equipment in close proximity to retaining walls can result in excess wall movement and/or soil loadings exceeding design values. In this regard, care should be taken during backfilling operations.

5.4.3 <u>Waterproofing</u>

Moisture affecting retaining walls is one of the most common post-construction complaints. Poorly applied or omitted waterproofing can lead to efflorescence or standing water inside the building. Efflorescence is a process in which a powdery substance is produced on the surface of the concrete by the evaporation of water. The white powder usually consists of soluble salts such as gypsum, calcite, and/or halite (common salt). Efflorescence is common to retaining walls and generally does not affect their strength or integrity.

It is recommended that retaining walls be waterproofed. Waterproofing design and inspection of its installation is not the responsibility of the geotechnical engineer. A qualified waterproofing consultant should be retained in order to recommend a product or method, which would provide protection to below grade walls.

5.5 <u>TEMPORARY EXCAVATIONS</u>

All vertical cuts shall be inspected to verify geologic continuity. Un-shored vertical cuts to a height of five (5') may be made in earth materials at the site. Un-shored cuts in excess of five feet (5') shall be sloped at a gradient of no steeper than 1:1 (horizontal to vertical) for the portion of the excavation above the vertical cut.

A representative of the geotechnical engineer or geologist should be present during grading to see temporary slopes. All excavations, including caissons, footings, and utility trenches, shall be properly and adequately fenced, and/or covered to ensure the safety of all those working on the project. All temporary excavations shall be stabilized as soon as possible after the initial excavation.

5.5.1 <u>Shoring</u>

If required, shoring may consist of cast-in-place concrete piles with wood-lagging. Shoring piles should be a minimum of 18 inches in diameter and a minimum of 8 feet into alluvium below the base of the excavation. Piles may be assumed fixed 3 feet below the base of the excavation. For the vertical forces, piles may be designed for a skin friction of 400 to 600 pounds per square foot for that portion of pile in contact with the alluvium. Shoring piles should be spaced a maximum of 10 feet on center.

The friction value is for the total of dead and frequently applied live loads and may be increased by one third for short duration loading, which includes the effects of wind or seismic forces. Resistance to lateral loading may be provided by passive earth pressure within the alluvium below the base of the excavation.

Passive earth pressure may be computed as an equivalent fluid having a density of 400 pounds per cubic foot. The maximum allowable earth pressure is 4,000 to 6,000 pounds per square foot. For design of isolated piles, the allowable passive and maximum earth pressures may be increased by 100 percent. Piles spaced more than $2\frac{1}{2}$ pile diameters on center may be considered isolated.

Rakers or other forms of internal bracing designed by the structural engineer may be used to support the shoring system where tieback anchors cannot be used.

5.5.3 <u>Lagging</u>

Lagging will be required between piles. Due to arching in the soils, the pressure on the lagging will be less that on the shoring piles. It is recommended that the lagging be designed for the full design pressure but be limited to a maximum of 400 pounds per square foot. The void between the lagging and the back-cut should be slurry-filled and observed by a representative of the geotechnical engineer.

A representative of the geotechnical engineer or geologist should be present during grading to see temporary slopes. All excavations, including caissons, footings, and utility trenches, shall be properly and adequately fenced, and/or covered to ensure the safety of all those working on the project.

All temporary excavations shall be stabilized as soon as possible after the initial excavation.

5.6 EXTERIOR FLATWORK AND AUXILIARY STRUCTURES

Whenever planned, exterior flatwork should be placed directly on a two-foot blanket of approved compacted fill. Five-inch net sections with #4 bars at 18 inches o.c.e.w. are also advised. Control joints should be planned at not more than twelve foot spacing for larger concrete areas. Narrower areas of flatwork such as walkways should have control joints planned at not greater than 1.5 times the width of the walkway. Recommendations provided above for interior slabs can also be used for exterior flatwork, but without a sand layer or Visqueen moisture barrier. Additionally, it is also recommended that at least 12-inch deepened footings be constructed along the edges of larger concrete areas.

Movement of slabs adjacent to structures can be mitigated by doweling slabs to perimeter footings. Doweling should consist of No. 4 bars bent around exterior footing reinforcement. Dowels should be extended at least two feet into planned exterior slabs. Doweling should be spaced consistent with the reinforcement schedule for the slab. With doweling, 3/8-inch minimum thickness expansion joint material should be provided. Where expansion joint material is provided, it should be held down about 3/8 inch below the surface. The expansion joints should be finished with a color matched, flowing, flexible sealer (e.g., pool deck compound) sanded to add mortar-like texture. As an option to doweling, an architectural separation could be provided between the main structures and abutting appurtenant improvements.

Auxiliary structures such as trash enclosures and garden walls can be placed directly on alluvium or on a two-foot blanket of compacted fill.

5.7 <u>CONCRETE/SULFATE/CORROSIVITY</u>

Testing of the sulfate content of the soil indicates that moderate levels of sulfate concentrations were encountered in the soil and therefore specialized concrete is not required for the project. We recommend that the low permeable concrete be utilized at the site to limit moisture transmission through slab and foundation. The structural engineer should specify appropriate compressive strength and water-cement ratio. Limited use (subject to approval of mix designs) of a water reducing agent may be included to increase workability. The concrete should be properly cured to minimize risk of shrinkage cracking. One-inch hard rock mixes should be provided. Pea gravel mixes are specifically not recommended but could be utilized for relatively non-critical improvements (e.g., flatwork) and other improvements provided the mix designs consider limiting shrinkage.

Contractors/other designers should take care in all aspects of designing mixes, detailing, placing, finishing, and curing concrete. The mix designers and contractor are advised to consider all available steps to reduce cracking. The use of shrinkage compensating cement or fiber reinforcing should be considered. Mix designs proposed by the contractor should be considered subject to review by the project engineer.

5.8 <u>SOIL CORROSIVITY</u>

According to testing of the site soils, the soils should be expected to be only mildly corrosive to ferrous metals. It is recommended that a consulting corrosion engineer be retained in order to determine the most appropriate protection measures for the project site.

Recommendations that the corrosion engineer may require include the following:

- All steel and wire concrete reinforcement should have at least 3 inches of concrete cover where cast against soil.
- Below-grade ferrous metals should be given a high-quality protective coating, such as plastic tape, extruded polyethylene, hot-applied coal tar enamel, or fusion-bonded epoxy.
- On any type of pipe, coat all bare metal appurtenances such as bolts, valves, joint harnesses, or flexible couplings with a coal tar or rubber-based mastic, coal tar epoxy, moldable sealant, wax tape, or equivalent, after assembly.
- Bond below-grade ferrous metals with non-conductive type joints for electrical continuity.
- Below-grade metals should be electrically insulated (isolated) from dissimilar metals, cement-mortar coated and concrete-encased metals, and above-grade metals, by means of insulated joints.
- Metal pipes penetrating concrete structures such as floors and walls should be provided with plastic sleeves, rubber seals, or other dielectric material to prevent pipe contact with the concrete and reinforcing steel.
- Bare copper tubing should be bedded and backfilled in clean sand at least 3 inches thick surrounding the tubing. The best corrosion control for hot water copper tubing is placement above-grade. Below-grade hot water copper tubing should be encased in impermeable, unstretched, non-shrink insulation with the joints and seams sealed.

5.9 PAVEMENT DESIGN

The following pavement sections are recommended as minimums:

Traffic Index	Asphalt Thickness	Base Thickness
Light Traffic (T.I.=5) for parking stalls	4 inches	6 inches
and driveways		
Heavy Traffic (T.I.= 6.5) for loading	4 inches	12 inches
docs and large truck traffic		

Concrete pavement sections should be a minimum of 6 inches thick and reinforced with #4 bars at 18" on center. A base of 6 inches is required below concrete pavement areas. Control joints should be planned at not more than twelve foot spacing.

All pavement should be placed on a minimum one-foot thick fill cap that is compacted to a minimum of 95% relative compaction.

5.10 DRAINAGE

Drainage should be directed away from structures via non-erodible conduits to suitable disposal areas. Two percent drainage is recommended directly away from structures. Building Code and Civil Engineer requirements and recommendations take precedence. All enclosed planters should be provided with a suitably located drain or drains and/or flooding protection in the form of weep holes or similar. Preferably, structures should have roof gutters and downspouts tied directly to the area drainage system.

5.11 PLAN REVIEW

When detailed grading and structural plans are developed, they should be reviewed by the project geotechnical consultant.

5.12 AGENCY REVIEW

All soil, geologic, and structural aspects of the proposed development are subject to the review and approval of the governing agency(s).

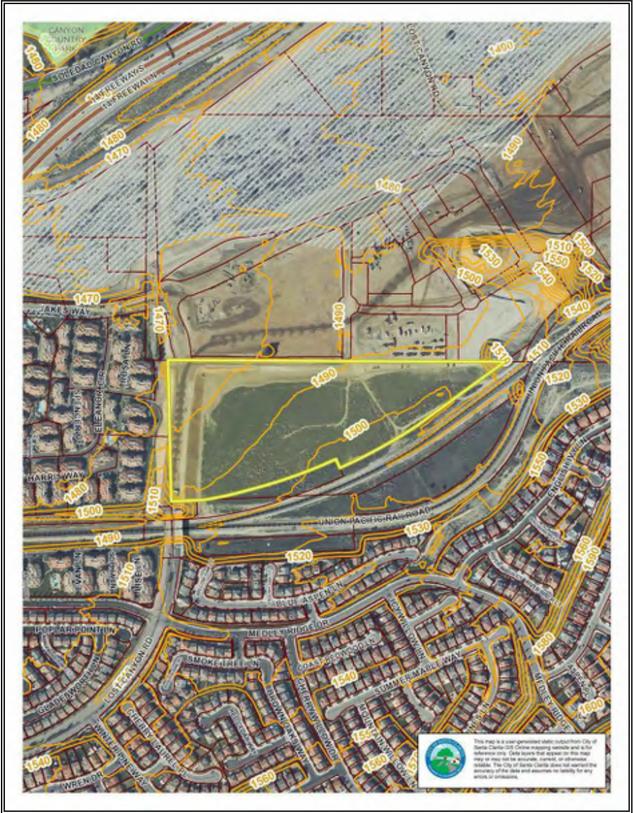
5.13 <u>SUPPLEMENTAL CONSULTING</u>

During construction, a number of reviews by the project geotechnical consultant are recommended to verify site geotechnical conditions and conformance with the intentions of the recommendations for construction. The following site reviews are advised, some of which are required by the governing agencies.

Preconstruction/pregrading meeting Advised
Cut and/or shoring observationRequired
Periodic geotechnical observations and testing during gradingRequired
Reinforcement for all foundations Advised
Slab subgrade moisture barrier membrane Advised
Slab subgrade rock placement Advised
Presaturation checks for all slabs in primary structure areas
Presaturation checks for all slabs for appurtenant structures Advised
Slab steel placement, primary and appurtenant structures Advised
Compaction of utility trench backfillAdvised

5.14 **PROJECT SAFETY**

The contractor is the party responsible for providing a safe site. This consultant will not direct the contractor's operations and cannot be responsible for the safety of personnel other than his own representatives on site. The contractor should notify the owner if he is aware of and/or anticipates unsafe conditions. If the geotechnical consultant at the time of construction considers conditions unsafe, the contractor, as well as the owner's representative, will be notified. Within this report the terminology safe or safely may have been utilized. The intent of such use is to imply low risk. Some risk will remain, however, as is always the case.


6.0 <u>REFERENCES CITED</u>

- Applied Technology Council, 2020, ATC Hazards by location, <u>https://hazards.atcouncil.org/</u>, website accessed August 2020
- Bailey, T. L., and Jahns, R. H., 1954, "Geology of the Transverse Range Province, Southern California," in Geology of Southern California, California Division of Mines Bull 170, Vol. 1, pp. 83-106.
- Bing Maps, 2020, Bing Maps, <u>https://www.bing.com/maps</u>, Microsoft Corporation, website accessed August 2020
- California Geological Survey (CGS), 1999, Earthquake Zones of Required Investigation Mint Canyon Quadrangle, California Geological Survey, map scale 1:24,000
- City of Santa Clarita, 2011, City of Santa Clarita General Plan Safety Element June 2011, City of Santa Clarita, 48 p.
- City of Santa Clarita, 2020, City of Santa Clarita Mapping Your City, City of Santa Clarita, <u>http://gis.santa-clarita.com/html5/MasterPUB.html</u>,website accessed August 2020.
- County of Los Angeles Department of Public Works (LADPW), Geotechnical and Materials Engineering Division. June 30, 2014. Low Impact Development Best Management Practice Guideline for Design, Investigation, and Reporting. Pgs 7-8. http://dpw.lacounty.gov/gmed/permits/docs/policies/GS200.1.pdf
- Department of Conservation, 1998, Seismic Hazard Zone Report for the Mint Canyon 7.5-Minute Quadrangle, Los Angeles County, California, Seismic Hazard Zone Report-018, Department of Conservation Division of Mines and Geology, 49 p.
- Department of Conservation, 2020a, Alquist-Priolo Earthquake Fault Zones, <u>https://www.conservation.ca.gov/cgs/alquist-priolo</u>, website accessed August 2020
- Department of Conservation, 2020b, Seismic Hazards Mapping Act, <u>https://www.conservation.ca.gov/cgs/shma</u>, website accessed August 2020
- Dibblee, T.W., and Ehrenspeck, H.E., 1996, Geologic map of the Mint Canyon quadrangle, Los Angeles County, California: Dibblee Geological Foundation, Dibblee Foundation Map DF-57, scale 1:24,000
- Jahns, R. H., and Muehlberger, W. R., 1954, "Geology of the Soledad Basin, Los Angeles County," in Geology of Southern California, California Division of Mines Bull. 170, Map Sheet No. 6.
- Oakeshott, G. B., 1958, "Geology and Mineral Deposits of San Fernando Quadrangle, Los Angeles County, California," California Division of Mines Bulletin 172, 147p.

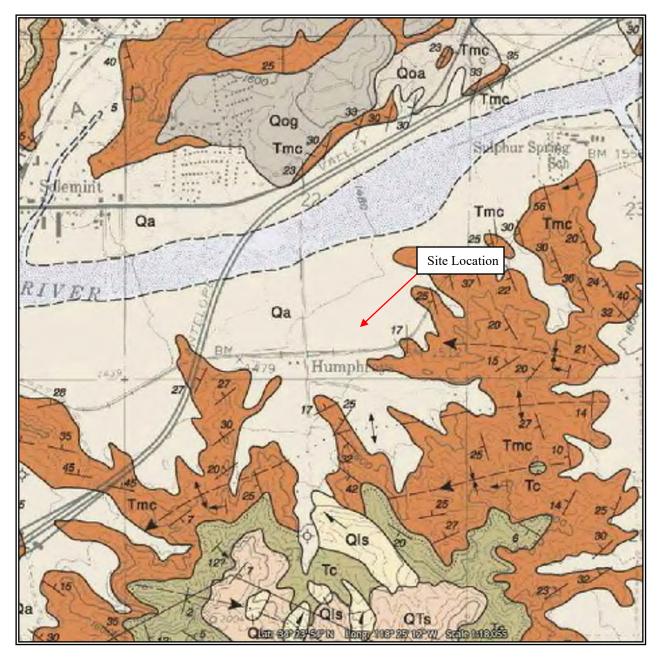

- Parrish. J. G., 2008, Special Publication 117A Guidelines for Evaluating and Mitigating Seismic Hazards in California, California Geological Survey, 108 p.
- RTF&A Geotechnical Engineering & Engineering Geology, 2008, Geotechnical Report for Temtative Tract Map No. 69164 Canyon Country, California Volume I of II for Vista Canyon Ranch, LLC, Independent Consultant Report
- Saul, R.B., and Wooten, T.M., 1983, Geology of the South Half of the Mint Canyon Quadrangle, Los Angeles County, California, CDMG Open File Report 83-24LA.
- State of California, 1995, Mint Canyon Quadrangle Earthquake Fault Zones, Revised Official Map, June 1, 1995.
- United States Geological Survey (USGS), 1999, Mint Canyon Quadrangle, California-Los Angeles Co. 7.5 Minute Series (Topographic): United States Department of the Interior Geological Survey, scale 1:24,000
- Weber, F.H., Jr., 1982, Geology and Geomorphology Along the San Gabriel Fault Zone, Los Angeles and Ventura Counties, California, CDMG Open File Report 82-2.
- Wentworth, C. M., and Yerkes, R. F., 1971, "Geologic Setting and Activity of Faults in the San Fernando Area, California," U.S. Geological Survey Professional Paper 733, pp. 6-16.
- Winterer, E.L., and Durham, D.L., 1962, Geology of Southeastern Ventura Basin, Los Angeles County, California, USGS Professional Paper 334-H.

Figure 1. Location map of the subject site (Bing Maps, 2020).

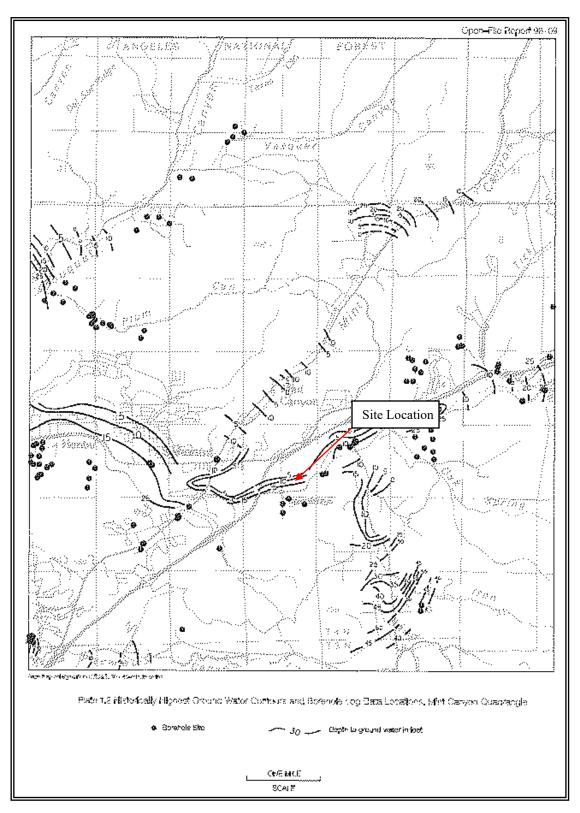
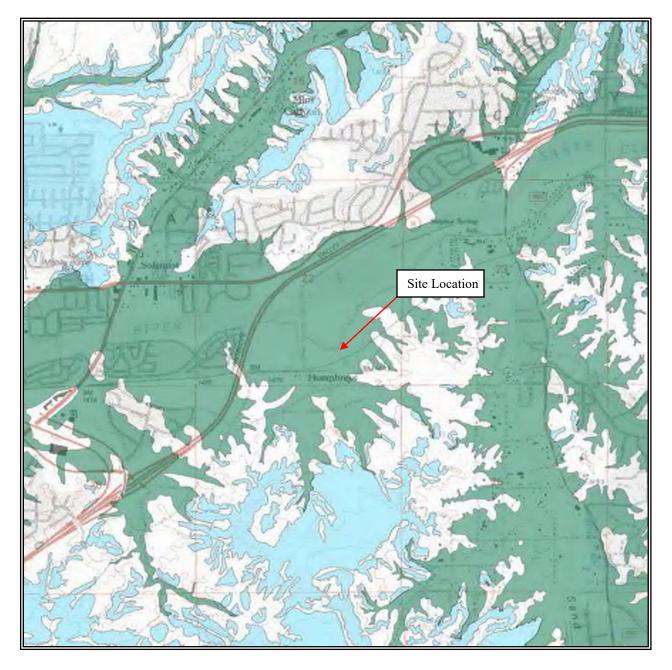
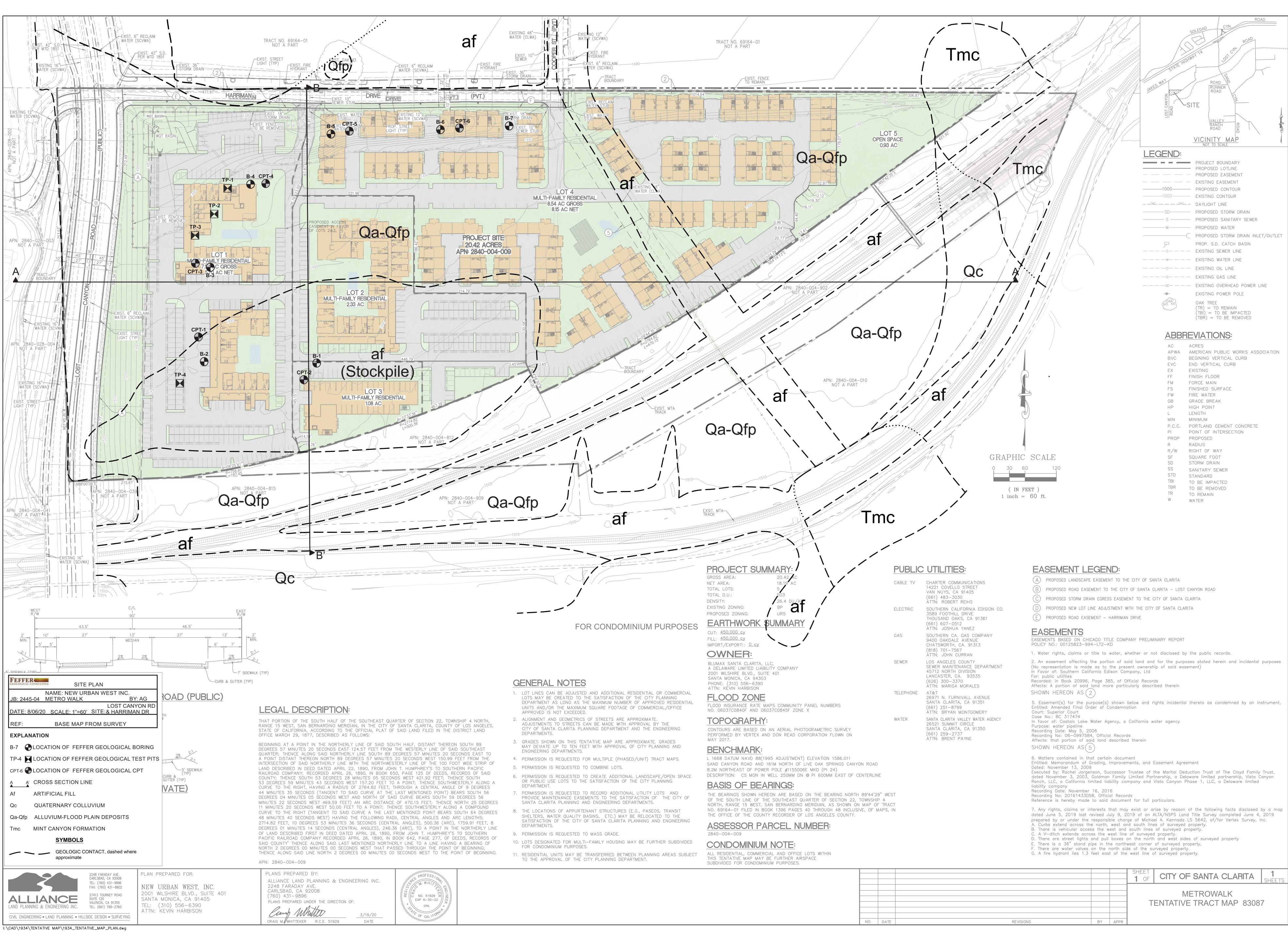
Figure 2. Aerial photograph with topographic overlay from City of Santa Clarita (2020). Site outlined in yellow.

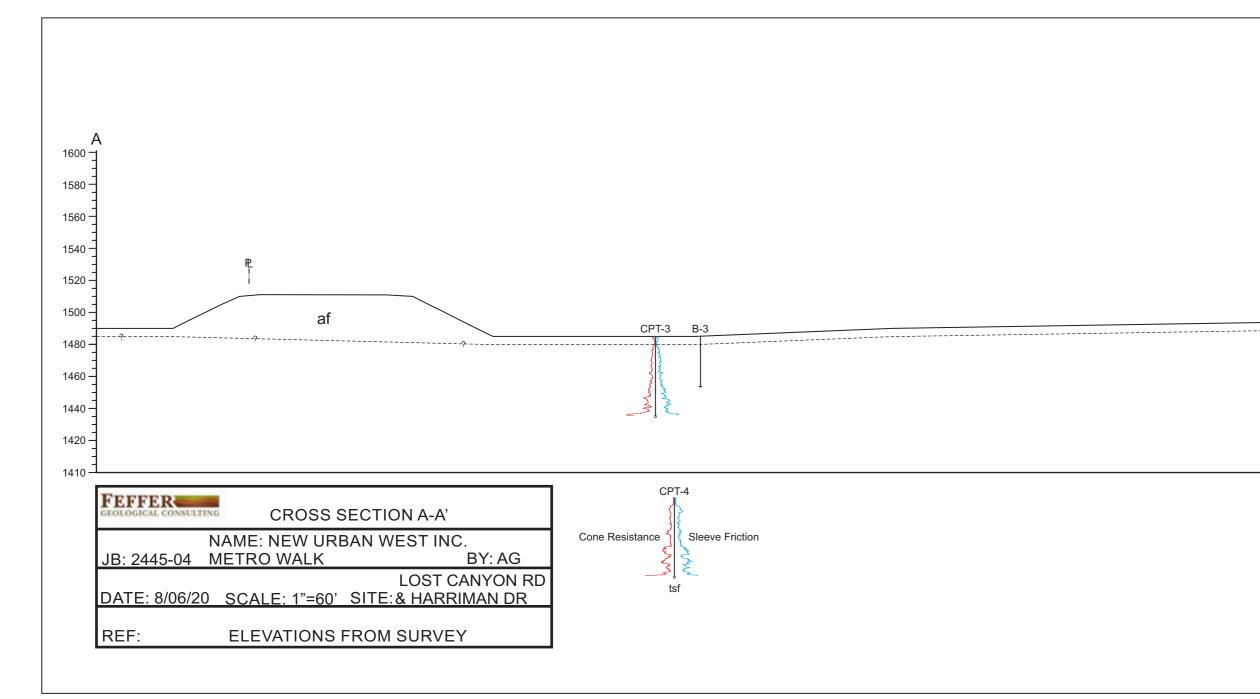
Figure 3. Portion of the geologic map of the mint canyon quadrangle by Dibblee and Ehrenspeck (1996).

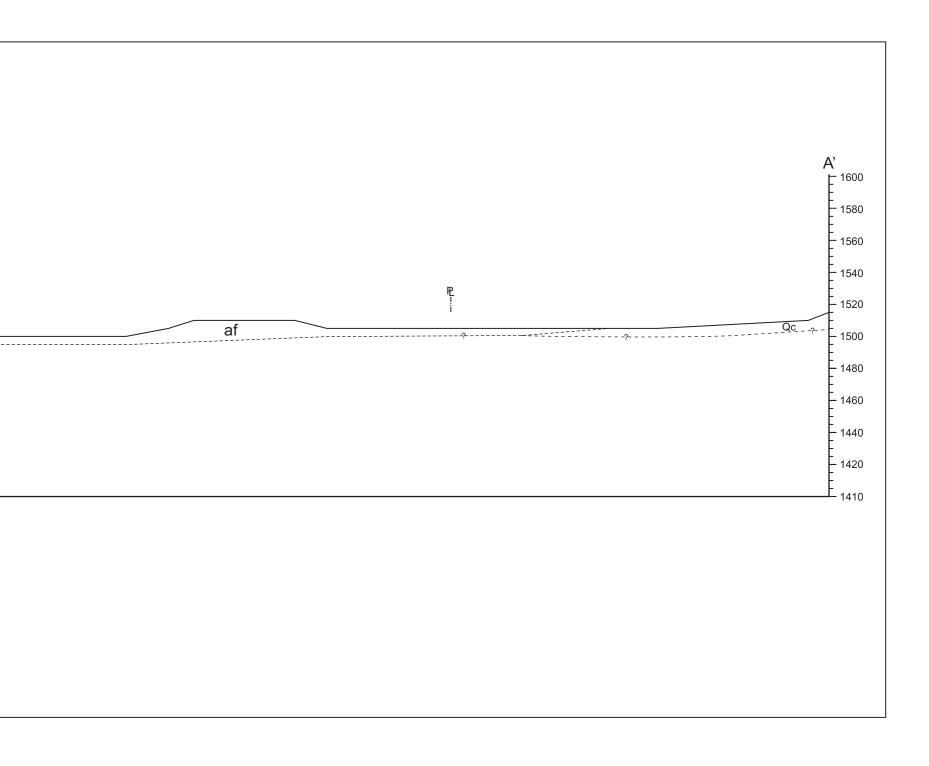


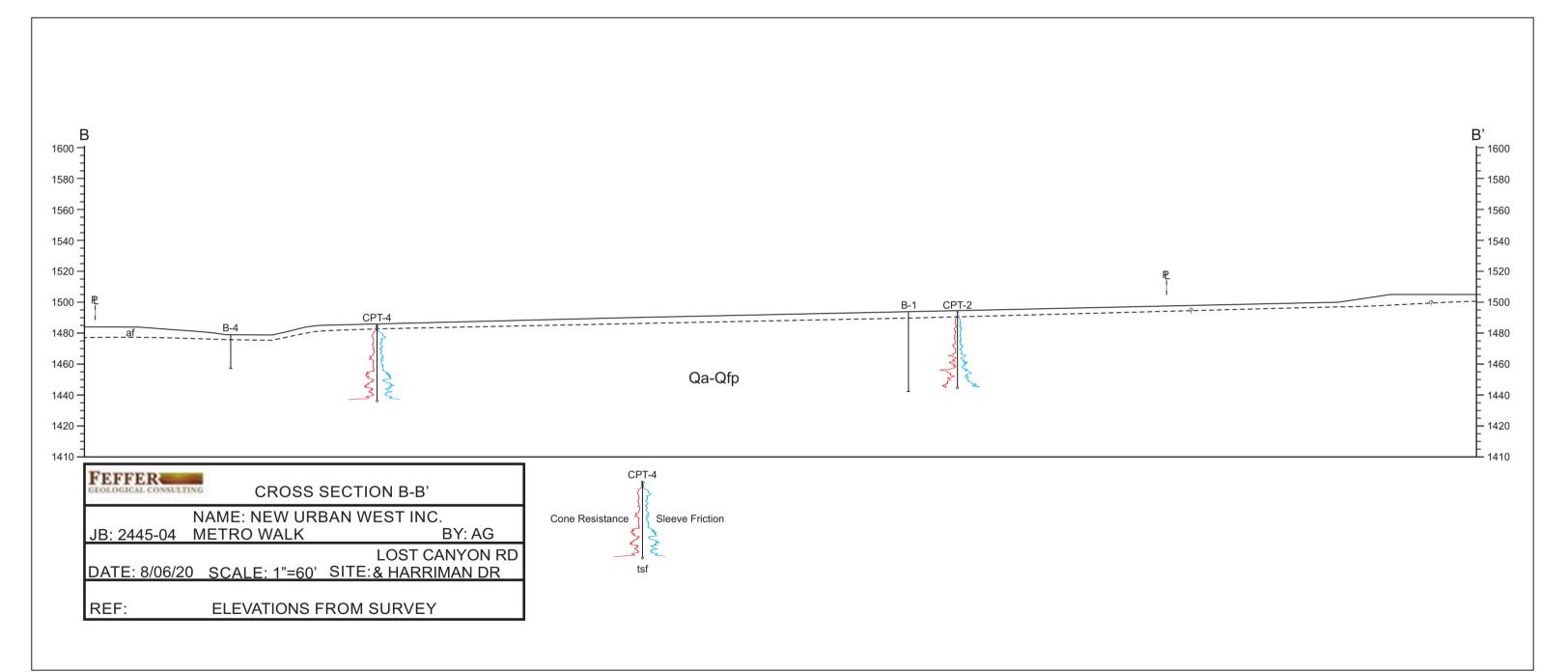
Figure 4. Quaternary geologic map of the mint canyon quadrangle (Plate 1,1; Department of Conservation, 1998).

Page 31


Figure 5. Historically highest groundwater contours in the site vicinity (Plate 1.2; Department of Conservation, 1998).


Figure 6. Portion of Earthquake Zones of Required Investigation Mint Canyon Quadrangle Seismic Hazard Zones (CGS, 1999).



					SHEET
					UF
NO.	DATE	REVISIONS	BY	APPR	

Qa-Qfp

APPENDIX 'A'

Excavation Logs

Sheet 1 of 1

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk Boring No: 1 Boring Location: Soil Covered Vacant Land

Date Performed: 4/15/2020

			nple /pe				
Depth in Feet	Blows per 6"	Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
- 0	1			Artificial Fill (Af)			
-	-						
- 5	- 11	R		Alluvium-Flood Plain Deposits (Qa-Qfp): Sandy silt	Medium Brown Yellow Hue	Medium dense	Moist
F	-			Gravel at 8'	Tellow The		
- - - 10 -	- - 11/1 -	2 R		Sandy gravel to gravelly sand, gravels up to 1/4" diameter	Medium Brown Yellow Hue	Medium Dense	Slightly Moist To Moist
- - 15 - -	- - 7/8 -	R		Silt with gravel	Brown Yellow Brown	Medium Dense	Moist
- - 20 -	- - 8/9 -	R		Sandy silt, caliche	Medium Brown Slight Yellow Hue	Medium Dense	Moist
- - 25 -	- 19/1: -	2 R		Cobbly sand interbeded with sandy silt to silty sand	Light Brown	Dense	Slightly Moist
- - 30 - -	- - 13/1 -	5 R		Gravelly sand to sandy gravel, gravels 1/4" to 1" diameter	Brown Yellow Brown	Dense	Slightly Moist
- - 35 -	- 28/1	5 R		Gravelly to cobbly sand	Light Brown Tan	Dense	Slightly Moist
]			End At 36.5', Af to 4', No Water, No Caving			
- 40						1	Figure
				Feffer Geological Consulting			гіуше

Sheet 1 of 2

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk

Boring No: 2 Boring Location: Soil Covered Vacant Land

Date Performed: 4/15/2020

Image: Process of the second secon	t t		San Ty					
2.5 Alluvium-Flood Plain Deposits (Qa-Qfp): Silty clay to clayey silt, trace gravels Gray brown, Medium brown Firm to stiff Moist 7.5 88 R Sandy silt Sandy silt Yellow brown Firm to stiff Moist 10 700 R Sandy silt Sandy silt Yellow brown Firm to stiff Moist 12.5 203 set Silty sand to sandy silt, trace gravels, caliche Light brown, tan Medium dense Moist 115 50 R Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly Moist 17.5 344 Set Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly Moist 20. 841 R Silty sand, trace gravels, caliche Light brown, Yellow brown Firm Moist 22.5 58 set Set Set Set Set Set Set Moist 22.5 58 set Sandy silt to silty sand Light brown Firm Moist 23.0 941 R Sandy silt to silty sand Light brown Firm	Depth in Fee		Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
5 as R Alluvium-Flood Plain Deposits (Ga-Ofp): Sity clay to clayey sit, trace gravels Gray brown, Medium brown Firm to stiff Moist 7.5 7.5 Sandy sit Sandy sit Yellow brown Firm to stiff Moist 10 7.75 Sandy sit Sandy sit Yellow brown Firm to stiff Moist 12.5 233 SPT Sity sand to sandy sit, trace gravels, caliche Light brown, tan Medium dense Moist 115 59 R Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly 17.5 3444 SPT Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly 220 8/11 R Silty sand, trace gravels, caliche Light brown Firm Slightly 22.5 58 SPT Sandy silt to silty sand Light brown Firm Moist 22.5 58 SPT Sandy silt to silty sand Light brown Firm Moist 22.5 58 SPT Sandy silt to silty sand Light brown Firm Moist 23.	- 0 -				Artificial Fill (Af)			
58687Silty clay to clayey silt, trace gravelsGray brown, Medium brownFirm to stiffMoist7.57.588Sandy siltYellow brownFirm to stiffMoist12.5203SPTSilty sand to sandy silt, trace gravels, calicheLight brown, tanMedium denseMoist17.5344SPTSandy silt to silty sand, calicheLight brown, Yellow brownFirmSlightly Moist17.5344SPTSandy silt to silty sand, calicheLight brown, Yellow brownFirmSlightly Moist17.5344SPTSandy silt to silty sand, calicheLight brown, Yellow brownFirmSlightly Moist20.471RSilty sand, trace gravels, calicheLight brown BrownFirmMoist22.558SPTSandy siltSilty sandLight brown YellowFirmMoist22.558SPTSandy silt to silty sandLight brown Yellow hueFirmMoist22.558SPTSandy silt to silty sandLight brown Yellow hueFirmMoist23.0SPTSilty sand to sandy silt, trace clay & gravelsLight brown Yellow hueFirmMoist30SPTSandy silt to silty sand, increase in sands with depthLight brown Yellow hueFirm, Medium denseMoist3511/17RSandy silt to silty sand, increase in silt with depthLight brown, TanFirm, Medium denseMoist37.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
12.5 283 sPT Silty sand to sandy silt, trace gravels, caliche Light brown, tan Medium dense Moist 15 59 R Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly Moist 17.5 3444 SPT Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly Moist 20 8111 R Silty sand, trace gravels, caliche Light brown, Yellow brown Firm Moist 22.5 58 SPT Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Moist 22.5 58 SPT Sandy silt Sandy silt Silty sand, trace gravels, caliche Light brown Firm Moist 22.5 58 SPT Sandy silt Sandy silt Silty sand, trace gravels, caliche Light brown Firm Moist 27.5 5770 SPT Sandy silt to silty sand Light brown Firm Moist 30 911 R Sandy silt to silty sand Light brown Firm Moist 32.5 5966 SPT Sandy silt to silty sand, increa		8/8	R				Firm to stiff	Moist
15 59 R Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly Moist 17.5 3444 SPT Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Slightly Moist 20 8/11 R Silty sand, trace gravels, caliche Light brown, Yellow brown Firm Slightly Moist 22.5 56 set Set Sandy silt to silty sand Light brown, Yellow brown Firm Moist 22.5 56 set Set Sandy silt to silty sand Light brown, Yellow brown Firm Moist 22.5 566 set Set Set Set Set Set Moist 22.5 567/10 set Silty sand to sandy silt, trace clay & gravels Light brown Yellow hue Firm Moist 22.5 5668 set Set Sandy silt to silty sand, increase in sands with Light brown Firm Moist 32.5 5668 set Set Sandy silt to silty sand, increase in sands with Light brown, Tan Firm, Moist 37.5 6689 set Sandy silt to	 - 10 -	7/10	R		Sandy silt	Yellow brown	Firm to stiff	Moist
17.5 3444 SPT Sandy silt to silty sand, caliche Light brown, Yellow brown Firm Moist 20 8/11 R Silty sand, trace gravels, caliche Light brown, Yellow brown Medium dense Slightly Moist 22.5 5/8 SPT Sandy silt Silty sand, trace gravels, caliche Light brown Medium dense Slightly Moist 22.5 5/8 SPT Sandy silt Sandy silt Silty sand Firm Moist 22.5 5/8 SPT Sandy silt to silty sand Light brown Brown Firm Moist 27.5 5/7/10 SPT Silty sand to sandy silt, trace clay & gravels Light brown Yellow hue Firm Moist 30 9/11 R Silty sand, trace gravels Light brown Yellow hue Firm Moist 32.5 5/66 SPT Sandy silt to silty sand, increase in sands with Light brown Yellow hue Firm, Moist 33.5 11/17 R Sandy silt to silty sand, increase in silt with Light brown, Tan Firm, Moist 37.5 6/89 SPT Sandy silt to silty sand, increase in silt with Light brown, Ta	12.5	2/3/3		SPT	Silty sand to sandy silt, trace gravels, caliche	Light brown, tan	Medium dense	Moist
208/11RSilty sand, trace gravels, calicheYellow brownMedium dense FirmSilghtly Moist22.55/8SPTSandy siltLight yellowFirmMoist22.55/8SPTSandy silt to silty sandLight yellow BrownFirmMoist257/8RSandy silt to silty sandLight brown 	 - 15 - 	5/9	R		Sandy silt to silty sand, caliche		Firm	
22.5 5/8 SPT Sandy silt Sandy silt Light yellow Brown Firm Moist 22.5 7/8 R Sandy silt to silty sand Light brown Yellow hue Firm Moist 27.5 5/7/10 SPT Silty sand to sandy silt, trace clay & gravels Light brown Yellow hue Firm Moist 30 9/11 R Silty sand, trace gravels Light brown Yellow hue Firm Moist 32.5 5/6/6 SPT Sandy silt to silty sand Light brown Yellow hue Firm Moist 32.5 5/6/6 SPT Sandy silt to silty sand, increase in sands with depth Light brown Yellow hue Firm, Moist 37.5 6/8/9 SPT Sandy silt to silty sand, increase in silt with depth Light brown, Tan Firm, Medium dense Moist 40 SPT Sandy silt to silty sand, increase in silt with depth Light brown, Tan Firm, Medium dense Moist	17.5	3/4/4		SPT	Sandy silt to silty sand, caliche	Light brown, Yellow brown	Firm	
25 7/8 R Sandy silt to silty sand Light brown Yellow hue Firm Moist 27.5 5/7/10 SPT Silty sand to sandy silt, trace clay & gravels Light brown Yellow hue Firm Moist 30 9/11 R Silty sand, trace gravels Light brown Yellow hue Firm Moist 32.5 5/6/6 SPT Sandy silt to silty sand Light brown Yellow hue Firm Moist 32.5 5/6/6 SPT Sandy silt to silty sand, increase in sands with depth Light brown Yellow hue Firm, Moist 37.5 6/6/9 SPT Sandy silt to silty sand, increase in silt with depth Light brown, Tan Firm, Medium dense Moist 40 SPT Sandy silt to silty sand, increase in silt with Light brown, Tan Firm, Medium dense Moist	- 20 -	8/11	R		Silty sand, trace gravels, caliche	Light brown		
27.5 5/7/10 SPT Silty sand to sandy silt, trace clay & gravels Light brown Yellow hue Firm Moist 30 9/11 R Silty sand, trace gravels Light brown Yellow hue Firm Moist 32.5 5/6/6 SPT Sandy silt to silty sand Light brown Yellow hue Firm Moist 32.5 5/6/6 SPT Sandy silt to silty sand Light brown Yellow hue Firm Moist 33.5 5/6/6 SPT Sandy silt to silty sand, increase in sands with depth Light brown Firm, Medium dense Moist 37.5 6/8/9 SPT Sandy silt to silty sand, increase in silt with depth Light brown, Tan Firm, Medium dense Moist	22.5	5/8		SPT	Sandy silt		Firm	Moist
30 9/11 R Silty sand, trace gravels Yellow hue Light brown Yellow hue Moist 32.5 5/6/6 SPT Sandy silt to silty sand Light brown Firm Moist 35 11/17 R Sandy silt to silty sand, increase in sands with depth Light brown Firm, Medium dense Slightly Moist 37.5 6/8/9 SPT Sandy silt to silty sand, increase in silt with depth Light brown, Tan Firm, Medium dense Moist	- 25 -	7/8	R		Sandy silt to silty sand		Firm	Moist
32.5 5/6/6 spt Sandy silt to silty sand Light brown Firm Moist 35 11/17 R Sandy silt to silty sand, increase in sands with depth Light brown Firm, Medium dense Slightly Moist 37.5 6/8/9 spt Sandy silt to silty sand, increase in silt with depth Light brown, Tan Firm, Medium dense Moist 40 Eight brown Firm, Medium dense Firm, Moist Moist	27.5	5/7/10		SPT	Silty sand to sandy silt, trace clay & gravels		Firm	Moist
- 35 - 11/17 R Sandy silt to silty sand, increase in sands with depth Light brown Firm, Medium dense Slightly Moist - 37.5 - 6/8/9 SPT Sandy silt to silty sand, increase in silt with depth Light brown, Tan Firm, Medium dense Moist - 40 - 40	- 30 -	9/11	R		Silty sand, trace gravels			Moist
37.5 6/8/9 SPT Sandy silt to silty sand, increase in silt with depth Light brown, Tan Medium dense Moist 40 40 Eigure	32.5	5/6/6		SPT	Sandy silt to silty sand	Light brown	Firm	Moist
- 40 - Tan Medium dense	- 35 -	11/17	R			Light brown		
Eigure	-	6/8/9		SPT				Moist
	F 40 -				Feffer Geological Consulting	1	<u> </u>	Figure

Sheet 2 of 2

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk

Boring No: 2 Boring Location: Soil Covered Vacant Land

Date Performed: 4/15/2020

t		San Ty	nple pe				
Depth in Feet	Blows per 6"	Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
- 40 -	13/20	R		Sandy silt	Light brown, tan	Medium dense,	Slightly
42.5	7/8/8		SPT	Sandy silt, trace clay	Medium brown	Firm Medium dense, Firm	Moist Slightly Moist
- 45 -	16/24	R		Silty sand, trace clay	Medium brown	Dense	Slightly Moist
47.5	111/12/14		SPT	Silty sand	Light yellow brown	Dense	Slightly Moist
- 50 -	18/25	R		Sandy silt to silty sand	Light brown	Dense	Slightly Moist
 - 55 -				End At 51.5', Af To 4', No Water, No Caving			
 - 60 							
 - 65 - 							
 - 70 - 							
 - 75 - 							
 - 80 -							
				Feffer Geological Consulting			Figure

Sheet 1 of 1

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk Boring No: 3 Boring Location: Soil Covered Vacant Land

Date Performed: 4/15/2020

Sample							
Depth in Feet	Blows per 6"	Undisturbed A	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
- 0 - 				Artificial Fill (Af)			
- <u>5</u> - - <u>5</u> - 	4/5	R		Alluvium-Flood Plain Deposits (Qa-Qfp): Silty sand to sandy silt	Medium brown	Medium dense	Slightly Moist
- 10 - - 10 - 	8/9	R		Silt, trace sand & gravel, caliche	Light yellow brown	Medium dense Firm	Slightly Moist
 - 15 - 	11/12	R		Silt, trace sand	Brown Yellow brown	Medium dense	Moist
 - 20 - 	7/10	R		Silty sand, trace gravel	Light yellow brown	Medium dense	Moist
 - 25 - 	8/11	R		Silty sand with common gravels, caliche	Brown	Medium dense	Slightly Moist
 - 30 - 	10/15	R		Sandy silt End At 31.5', Af to 4', No Water, No Caving	Light Yellow brown	Medium dense Dense	Slightly Moist
 - 35 - 							
 - 40 -							
				Feffer Geological Consulting			Figure

Sheet 1 of 1

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk Boring No: 4 Boring Location: Soil Covered Vacant Land

Date Performed: 4/15/2020

Sample Type							
Depth in Feet	Blows per 6"	Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
<u> </u>				Artificial Fill (Af)			
- 5 - 	4/5	R		Alluvium-Flood Plain Deposits (Qa-Qfp): Clayey silt, caliche	Medium brown	Medium dense	Slightly Moist
 - 10 - 	7/10	R		Sandy silt to silty, trace gravels, caliche, carbon	Brown Yellow vrown	Medium dense Firm	Slightly Moist
 - 15 - 	9/13	R		Sandy silt to silty sand, trace common gravels	Light olive Yellow brown	Medium dense	Moist
 - 20	8/12	R		Silty sand, trace gravel	Light yellow brown	Medium dense	Moist
 - 25 				End At 21.5', Af to 4', No Water, No Caving			
 - 30 - 							
- 35 - - 35 - 							
- 40 -				Feffer Geological Consulting			Figure

Sheet 1 of 2

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk

Boring No: 5 Boring Location: Soil Covered Vacant Land

Date Performed: 4/16/2020

and by			San Ty					
2.5 70 R Alluvium-Flood Plain Deposits (Qa-Qfp): Sandy silt Olive brown to brown Firm Moist 7.5 7.5 8 Silt, trace clay, mica Olive yellow Brown Firm Moist 10 7.9 R Silt, trace clay, mica Olive yellow Brown Firm Moist 12.5 466 set set Sandy silt to silty sand, trace gravels & rootlets, calachie Olive yellow Brown Firm Moist 115 466 set Sandy silt to silty sand, trace gravels & rootlets, calachie Olive yellow Brown Dense to stiff Moist 117.5 466 Silt grades into sandy silt to silt with trace sand Olive yellow Brown Firm Moist 22.5 666 set Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 22.5 666 set Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 27.5 666 set Silty sand, race gravels, FeO2 staining Olive yellow Brown Medium dense Moist 30 1419 R Silty sand, rounded, subrounded, angular gravels	Depth in Feet		Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
5 76 R Alluvium-Flood Plain Deposits (Qa-Qfp): Sandy silt Olive brown to brown Firm Moist 7.5 7.5 7.5 8 Sitt, trace clay, mica Olive yellow Brown Firm Moist 12.5 448 SPT Sandy silt to silty sand, trace gravels & rootlets Olive yellow Brown Firm Moist 15 471 R Sandy silt to silty sand, trace gravels & rootlets, calachie Olive yellow Brown Dense to stiff Moist 17.5 544 Silt grades into sandy silt to silt with trace sand Olive brown Medium dense Firm Moist 22.6 8413 R Silt grades into sandy silt to silt with trace sand Olive brown Medium dense Brown Moist 22.5 544 Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Brown Moist 22.5 544 Silty sand, trace gravels, FeO2 staining Olive yellow Brown Firm Moist 22.5 544 R Silty sand, rounded, subrounded, angular gravels up to 1/2" diameter Olive yellow Brown Firm Moist 30 1445 R Silty sand grades into gravely sand,	- 0 -				Artificial Fill (Af)			
57578Sandy siltOlive brown to brownFirmMoist7.57.57.58Sandy siltSilt, trace clay, micaOlive yellow BrownFirmMoist12.54466SPTSandy silt to silty sand, trace gravels & rootletsOlive yellow BrownFirmMoist12.54466SPTSandy silt to silty sand, trace gravels & rootlets, catachieOlive yellow BrownFirmMoist15811RSandy silt to silty sand, trace gravels & rootlets, catachieOlive yellow BrownDense to stiffMoist17.5555SPTSilty sand trace clay & gravelOlive yellow BrownFirmMoist17.5555SPTSilty sand, trace gravels, calachieYellow olive BrownMedium dense BrownMoist22.55956SPTSilty sand, trace gravels, calachieYellow olive BrownMedium dense BrownMoist22.55956SPTSandy silt, trace gravels, FeO2 staining Gravelly sand, rounded, subrounded, angular gravels up to 1/2" diameterOlive yellow BrownFirm Moist32.56459SPTSandy silt, interbedded with silt and gravelly sands BrownBrownDenseMoist3511/19RSilty sand grades into gravelly sand, trace clay BrownBrownDenseMoist37.56401SPTSandy silt, interbedded with sandy siltOlive yellow BrownFirm, Medium denseMoist37.56401SPT <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
10 779 R Silt, trace clay, mica Olive yellow Brown Firm Moist 12.5 4666 sPT Sandy silt to silty sand, trace gravels & rootlets Olive yellow Brown Firm Moist 15 4665 SPT Sandy silt to silty sand, trace gravels & rootlets, calachie Olive yellow Brown Dense to stiff Moist 17.5 5655 SPT Silty sand trace clay & gravel Olive yellow Brown Firm Moist 20 8/13 R Silt grades into sandy silt to silt with trace sand Olive brown Medium dense Firm Moist 22.5 5666 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Brown Moist 22.5 5668 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Brown Moist 23.5 5668 SPT Sandy silt, trace gravels, FeO2 staining Olive yellow Brown Firm Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular gravels up to 1/2" diameter Brown Dense Moist 35 11/19 R Silty sand grades into gra		7/9	R				Firm	Moist
12.5 466 SPT Sandy silt to silty sand, trace gravels & rootlets Brown Firm Moist 15 8/11 R Sandy silt to silty sand, trace gravels & rootlets, calachie Olive yellow Brown Dense to stiff Moist 17.5 5655 SPT Silty sand trace clay & gravel Olive yellow Brown Firm Moist 20 8/13 R Silt grades into sandy silt to silt with trace sand Olive brown Medium dense Moist 22.5 5665 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 22.5 5666 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 22.5 5666 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 27.5 5666 SPT Sandy silt, trace gravels, FeO2 staining Olive yellow Brown Firm Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular gravels up to 1/2" diameter Olive yellow Brown Dense Moist 32.5 66/10 SPT Sandy silt, inte	- 1.5							
15 8/11 R Sandy silt to silty sand, trace gravels & rootlets, calachie Olive yellow Brown Dense to stiff Moist 17.5 9/55 SPT Silty sand trace clay & gravel Olive yellow Brown Firm Moist 20 8/13 R Silt grades into sandy silt to silt with trace sand Olive pellow Brown Medium dense Moist 22.5 5/66 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 22.5 5/66 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 22.5 5/66 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 27.5 5/66 SPT Sandy silt, trace gravels, FeO2 staining Olive yellow Brown Firm Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular gravely sands Brown Firm Moist 32.5 6/8/10 SPT Sandy silt, interbedded with silt and gravelly sands Brown Dense Moist 35 11/19 R Silty sand grades into gravely sand	- 10 -	7/9	R		Silt, trace clay, mica		Firm	Moist
17.5 555 sPT Silty sand trace clay & gravel Olive yellow Brown Firm Medium dense Moist 20 8/13 R Silt grades into sandy silt to silt with trace sand Olive brown Medium dense Moist 22.5 566 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 22.5 566 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 25 11/19 R Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular gravels up to 1/2" diameter Olive yellow Brown Firm Moist 32.5 6870 SPT Sandy silt, interbedded with silt and gravelly sands Brown Firm Moist 335 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 91011 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Brown Firm, Medium dense Moist 40 Velove SPT Sand, trace silt, in	12.5	4/6/6		SPT	Sandy silt to silty sand, trace gravels & rootlets		Firm	Moist
20 8/13 R Silt grades into sandy silt to silt with trace sand Olive brown Medium dense Moist 22.5 5/6/6 SPT Silty sand, trace gravels, calachie Yellow olive Medium dense Moist 22.5 5/6/6 SPT Silty sand, trace gravels, calachie Yellow olive Medium dense Moist 25 11/19 R Silty sand, trace gravels, calachie Yellow olive Medium dense Moist 27.5 5/6/8 SPT Sandy silt, trace gravels, FeO2 staining Olive yellow Firm Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular Olive yellow Dense Moist 32.5 68/10 SPT Sandy silt, interbedded with silt and gravelly sands Brown Dense Moist 35.5 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 9/10/11 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Firm, Moist 40	- 15 -	8/11	R				Dense to stiff	Moist
22.5 5/6/6 SPT Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 25 11/19 R Silty sand, trace gravels, calachie Yellow olive Brown Medium dense Moist 27.5 5/6/6 SPT Sandy silt, trace gravels, FeO2 staining Olive yellow Brown Firm Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular gravels up to 1/2" diameter Olive yellow Brown Dense Moist 32.5 6/8/10 SPT Sandy silt, interbedded with silt and gravelly sands Brown Firm Moist 35 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 9/10/11 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Brown Firm, Moist Moist 40 Vellow SPT Sand, trace silt, interbedded with sandy silt Olive yellow Brown Firm, Medium dense Moist	17.5	5/5/5		SPT	Silty sand trace clay & gravel			Moist
25 11/19 R Silty sand, trace gravels, calachie Brown Medium dense Moist 27.5 5668 SPT Sandy silt, trace gravels, FeO2 staining Olive yellow Firm Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular Olive yellow Brown Dense Moist 32.5 6/8/10 SPT Sandy silt, interbedded with silt and gravelly sands Brown Firm Moist 35 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 9/10/11 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Firm, Moist 40 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Firm, Moist	- 20 -	8/13	R		Silt grades into sandy silt to silt with trace sand	Olive brown		Moist
27.5 5/6/8 SPT Sandy silt, trace gravels, FeO2 staining Olive yellow Brown Firm Moist 30 14/19 R Gravelly sand, rounded, subrounded, angular gravels up to 1/2" diameter Olive yellow Brown Dense Moist 32.5 6/8/10 SPT Sandy silt, interbedded with silt and gravelly sands Brown Dense Moist 35 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 9/10/11 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Brown Firm, Moist 40 End SPT Sand, trace silt, interbedded with sandy silt Olive yellow Brown Firm, Medium dense	22.5	5/6/6		SPT	Silty sand, trace gravels, calachie		Medium dense	Moist
30 14/19 R Gravelly sand, rounded, subrounded, angular gravels up to 1/2" diameter Brown Olive yellow Brown Dense Moist 32.5 6/8/10 spt Sandy silt, interbedded with silt and gravelly sands Brown Firm Moist 35 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 9/10/11 spt Sand, trace silt, interbedded with sandy silt Olive yellow Brown Firm, Moist 40	- 25 -	11/19	R		Silty sand, trace gravels, calachie		Medium dense	Moist
32.5 6/8/10 spt Sandy silt, interbedded with silt and gravelly sands Brown Firm Moist 35 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 9/10/11 spt Sand, trace silt, interbedded with sandy silt Olive yellow Brown Firm, Moist 40 Eigure Firm, Moist Sprume Sprume Firm, Moist	27.5	5/6/8		SPT	Sandy silt, trace gravels, FeO2 staining		Firm	Moist
35 11/19 R Silty sand grades into gravelly sand, trace clay Brown Dense Moist 37.5 9/10/11 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Firm, Medium dense Moist 40 Eigure Set Set Set Set Set Set	- 30 -	14/19	R				Dense	Moist
37.5 9/10/11 SPT Sand, trace silt, interbedded with sandy silt Olive yellow Firm, Moist 40 40 Eigure	32.5	6/8/10		SPT	Sandy silt, interbedded with silt and gravelly sands	Brown	Firm	Moist
Brown Medium dense	- 35 -	11/19	R		Silty sand grades into gravelly sand, trace clay	Brown	Dense	Moist
Figure		9/10/11		SPT	Sand, trace silt, interbedded with sandy silt		'	Moist
	- 40 -				Feffer Geological Consulting			Figure

Sheet 2 of 2

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk

Boring No: 5 Boring Location: Soil Covered Vacant Land

Date Performed: 4/16/2020

t		San Ty					
Depth in Feet	Blows per 6"	Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
- 40 -	14/22	R		Fine grained sandy silt	Olive yellow	Dense	Moist
42.5	9/9/9		SPT	Silty sand	Brown Olive brown	Medium dense, Firm	Moist
- 45 -	13/21	R		Silty sand	Olive brown	Dense	Slightly Moist
47.5	6/9/13		SPT	Fine to medium grained sand, trace silt	Light olive yellow brown	Medium dense	Moist
- 50 -	27/32	R		Fine grained silty sand grades into gravelly sand, gravels up to 1/2" diameter	Light olive yellow brown	Dense	Moist
 - 55 - 				End At 51.5', Af To 4', No Water, No Caving			
- 60 - 							
- 65 							
- 70 - 							
 - 75 - 	· · ·						
				Feffer Geological Consulting			Figure

Sheet 1 of 1

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk Boring No: 6 Boring Location: Soil Covered Vacant Land

Date Performed: 4/16/2020

Sample								
Depth in Feet	Blows per 6"	Undisturbed			Color	Density	Moisture	
			[Bedrock/ Soil Description				
- 0 - - ·				Artificial Fill (Af)				
- 5 - 	13/14	R		Alluvium-Flood Plain Deposits (Qa-Qfp): Sandy silt to silt	Medium brown Yellow hue	Dense	Moist	
- 10 - - 10 - - ·	6/8	R		Silt trace sand & gravel, caliche	Yellow brown	Medium dense Firm	Moist	
- · ·	6/9	R		Sandy silt, caliche	Brown Yellow hue	Medium dense Firm	Moist	
- 20 - - 20 - 	9/11	R		Sand grades into gravelly sand, gravels up to 1/4" diameter	Light brown	Medium dense	Moist	
 - 25 - 	7/10	R		Silt, trace clay, caliche, pores	Olive brown	Firm	Moist	
	13/18	R		Silty sand, trace gravel, caliche, carbon, mica	Olive Yellow brown	Dense, stiff	Moist	
 - 35 - 	10/13	R		Silty sand grades into silt	Light brown	Dense	Moist	
 				End At 36.5', Af to 4', No Water, No Caving				
	<u> </u>			Feffer Geological Consulting			Figure	
<u> </u>								

Sheet 1 of 2

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk

Boring No: 7 Boring Location: Soil Covered Vacant Land

Date Performed: 4/16/2020

+-		San Ty							
Depth in Feet	Blows per 6"	Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture		
- 0 -				Artificial Fill (Af)					
2.5									
- 5 - - 5 -	6/6	R		Alluvium-Flood Plain Deposits (Qa-Qfp): Silt, caliche	Olive brown to brown	Firm medium dense	Moist		
7.5									
- 10 -	9/13	R		Sandy silt, caliche	Olive yellow Brown	Firm	Moist		
12.5	6/7/11		SPT	Sandy silt	Olive yellow Brown	Firm	Moist		
- 15 -	7/10	R		Sand trace silt, increase in grain size with depth	Light brown yellow hue	Medium dense	Moist		
17.5	5/5/6		SPT	Silty sand grades into sandy silt, trace gravel, poorly laminated, caliche	Brown olive hue	Firm	Slightly moist		
- 20 -	7/11	R		Sandy silt trace gravel, rootlets	Olive brown	Firm	Moist		
22.5	6/12/19		SPT	Gravelly medium grained sand @24' Gravels	Light to medium Brown	Dense	Moist		
- 25 -	6/8	R		Silt trace sand, caliche	Brown olive hue	Dense	Moist		
27.5	4/5/7		SPT	Silt trace sand, caliche, increase in sand with depth	Brown olive brown	Firm	Moist		
- 30 -	9/11	R		Silt trace gravels, caliche	Olive brown	Firm	Moist		
32.5	7/7/7		SPT	Fine grained sand with gravel	Brown slight olive yellow hue	Medium dense	Moist		
- 35 -	10/15	R		Sandy silt trace gravels, caliche	Olive brown	Firm	Moist		
- 37.5 - 37.5	6/6/7		SPT	Silt	Olive brown	Firm	Moist		
- 40 -	Feffer Geological Consulting								

Sheet 2 of 2

Job Number: 2445-04 Project: New Urban West Inc.-Metro Walk

Boring No: 7 Boring Location: Soil Covered Vacant Land

Date Performed: 4/16/2020

L T		San Ty					
Depth in Feet	Blows per 6"	Undisturbed	Bulk	Bedrock/ Soil Description	Color	Density	Moisture
- 40 -	13/20	R		Silt	Light olive brown	Firm	Moist
42.5	7/8/8		SPT	Silt	Olive brown	Firm	Moist
- 45 -	16/24	R		Silty sand, trace gravel, caliche, grades into clayey silt	Light olive brown	Dense	Moist
47.5	111/12/14		SPT	Clayey silt, caliche	Brown olive brown	Firm to stiff	Moist
 - 50 - 	18/25	R		Sandy silt trace gravels, increase in gravels with depth	Brown olive brown	Dense	Moist
 - 55 - 				End At 51.5', Af To 4', No Water, No Caving			
 - 60 							
 - 65 							
 - 70 - 							
 - 75 - 	- - - -						
- 80 -				Feffer Geological Consulting			Figure

	RAPHIC I	\cap		APPRO	XIMATE SCALE	E : 1"=	=5'	TES	TEST EXCAVATION : 1				
		_0		DATE L	OGGED : 7/6/2	0	BY : YMH	ADI	ADDRESS: Lost Canyon Rd. & Harriman Dr.				
Ę	5												
0							°∫.· (A1						
DEPTH	5				-		<u>.</u>	 a-Qpf					
1()												
RING	SAMPLE DEPTH	Blows		OCATION : See Site Map									
	 □ DEPTH □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9 □ 10 □ 11 □ 12 □ 13 □ 14 	B	0-4' Artificial Fill (Af): Clayey silt, medium brown, slightly moist, medium dense 4-6' Alluvium-Flood Plain Deposits (Qa-Qfp): Silty sand to sandy silt, medium brown, slightly moist to moist, medium dense to dense End At 6', Artificial Fill To 4', No Water, No Caving								um dense		
	FEFFER (GE	O CON	SULTI	NG	F.N. 2445-04 New Urban West I Metro Walk					PLATE		

	RAPHIC L	06	APPRO	XIMATE SCALE :	1"=5'	TEST EXCAVATION : 2			
		-00	DATE L	OGGED : 7/6/20	BY : YMH	ADDRESS: I	Lost Canyon Rd.	& Harriman Dr.	
5	5								
							 Image: A second s		
DEPTH		¥		Af					
5	5			Qa	a-Qpf				
10					<u>L ' </u>				
RING	SAMPLE DEPTH	SMOR DES		4 -					
	<u> </u>	 1 1 2 3 4-10' Alluvium-Flood Plain Deposits (Qa-Qfp): Silty sand to sandy silt, medium brown, slightly moist, medium dense 5 @ 10' Silt, trace sand & gravel, caliche light yellow, brown, slightly moist, medium dense to firm 7 8 9 10 11 12 13 							
	FEFFER G	GEO CC	NSULTI	NG	F.N. 2445-04		ban West Inc.	PLATE	
	•			l		Metro V	valk	1	

GRAPHIC LOG					APPRO	XIMATE SCALE	E : 1"=1)'		TEST EXCAVATION : 3			
	אזי		_0	U S	DATE L	OGGED : 7/6/20)	BY : YMH		ADDRESS	: Lost Canyon Rd.	& Harriman Dr.	
1	0												
	0			\searrow							V		
DEPTH	0					-	λf Qa-Qp						
.	10							-					
	20												
	_0												
RING		SAMPLE	Blows			e Site Map							
R	ō		Ē	DESCRIPTION: Classification (USCS), color, moisture, consistency etc.									
		- 2 - 4 - 6 - 8 - 10 - 12 - 14 - 16 - 18 - 20 - 22 - 24 - 26 - 28		0-4' Artificial Fill (Af): Clayey silt, medium brown, slightly moist, medium dense to dense 4-10' Alluvium-Flood Plain Deposits (Qa-Qfp): Silty sand to sandy silt, medium brown, slightly moist, medium dense @ 10' Silt, trace sand & gravel, caliche light yellow, brown, slightly moist, medium dense to firm @15' Sandy silt to silty sand, trace common gravels, light olive moist yellow brown, moist, medium dense End At 17', Artificial Fill To 4', No Water, No Caving EO CONSULTING F.N. 2445-04									
	1	FEFFER (GE	O CON	SULTI	NG	F.N	. 2445-0	4		Walk	PLATE	

GRAPHIC LOG					APPROXIMATE SCALE : 1"=10'						TEST EXCAVATION : 4			
	אזי		_0	U U	DATE L	OGGED : 7/6/2)	BY : Y	MH	ADD	RESS: I	ost Canyon Rd.	& Harriman Dr.	
1	0													
	0			\searrow								V		
							٩f	(; .)						
DEPTH						-	Qa-Qp							
DE							xu - Ql							
	10							•••						
								`•`•						
	20													
U		SAMPLE	sv	LOCAT	ION : Se	e Site Map				1				
RING		DEPTH	Blows	DESCF	RIPTION:	Classification	(USC	S), col	or, mo	oisture, co	onsisten	cy etc.		
		_ 2				Fill (Af):	ام ما	a la thu	maia	t moodiu		na ta danaa		
		_ 4		Clayey silt, medium brown, slightly moist, medium dense to dense										
		- 6				n-Flood Pla						oist, firm to sti	ff	
		- 8		-	-		-							
		- 10 - 12			Silty sa m dens		y silt,	trace	grav	els, cal	liche, li	ght brown, tar	n, moist,	
												1.0		
	— 16 @15' Sandy silt to silty sand, caliche, light brown, yellow brown, slightly firm									intiy moist,				
		_ 18			1 1 7' A	whife as a local state	- <i>A</i> , I	16.14	at		dia ci			
		- 20			ι 17', A	rtificial Fill T	04, I	NO VV	ater,	NO Ca	ving			
		_ 22 _ 24												
		24 26												
		- 28												
		15 FEFFER C	GEO	O CON	SULTI	NG	F.N	l. 244	5-04		New Ur Metro V	ban West Inc. Valk	PLATE	

SUMMARY

OF CONE PENETRATION TEST DATA

Project:

New Urban West, Inc. – Metrowalk 27327 English Oak Court Santa Clarita, CA April 15, 2020

Prepared for:

Ms. Yvette Hays Feffer Geological Consulting 1990 S. Bundy Drive, Ste 400 Los Angeles, CA 90025 Office (310) 207-5048 / Fax (310) 826-0182

Prepared by:

Kehoe Testing & Engineering

5415 Industrial Drive Huntington Beach, CA 92649-1518 Office (714) 901-7270 / Fax (714) 901-7289 www.kehoetesting.com

TABLE OF CONTENTS

1. INTRODUCTION

- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- CPT Data Files (sent via email)

SUMMARY OF CONE PENETRATION TEST DATA

1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the New Urban West, Inc. - Metrowalk project located at 27327 English Oak Court in Santa Clarita, California. The work was performed by Kehoe Testing & Engineering (KTE) on April 15, 2020. The scope of work was performed as directed by Feffer Geological Consulting personnel.

2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at six locations to determine the soil lithology. A summary is provided in **TABLE 2.1**.

LOCATION	DEPTH OF CPT (ft)	COMMENTS/NOTES:
CPT-1	50	
CPT-2	50	
CPT-3	50	
CPT-4	50	
CPT-5	50	
CPT-6	49	

TABLE 2.1 - Summary of CPT Soundings

3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone and recorded the following parameters at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Inclination
- Sleeve Friction (fs)
- Penetration Speed
- Dynamic Pore Pressure (u)

The above parameters were recorded and viewed in real time using a laptop computer. Data is stored at the KTE office for up to 2 years for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. These plots were generated using the CPeT-IT program. Penetration depths are referenced to ground surface. The soil behavior type on the CPT plots is derived from the attached CPT SBT plot (Robertson, "Interpretation of Cone Penetration Test...", 2009) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used along with cone resistance to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

The CPT data files have also been provided. These files can be imported in CPeT-IT (software by GeoLogismiki) and other programs to calculate various geotechnical parameters.

It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u. In these situations, experience, judgement and an assessment of the pore pressure data should be used to infer the soil behavior type.

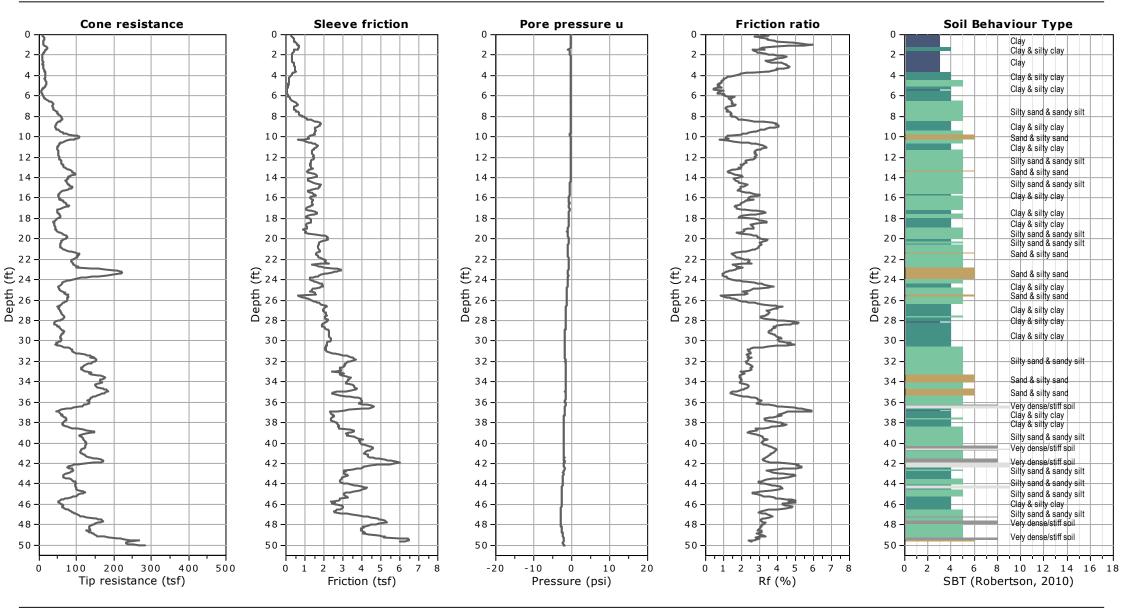
If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

Kehoe Testing & Engineering

. Juha

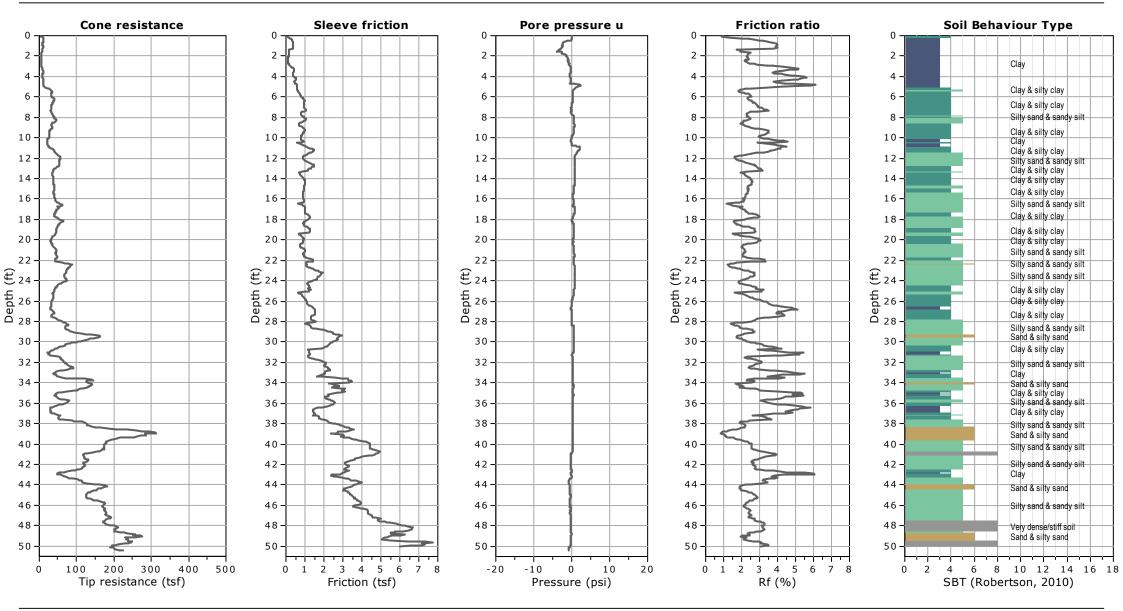
Steven P. Kehoe President


04/17/20-wt-1652

APPENDIX

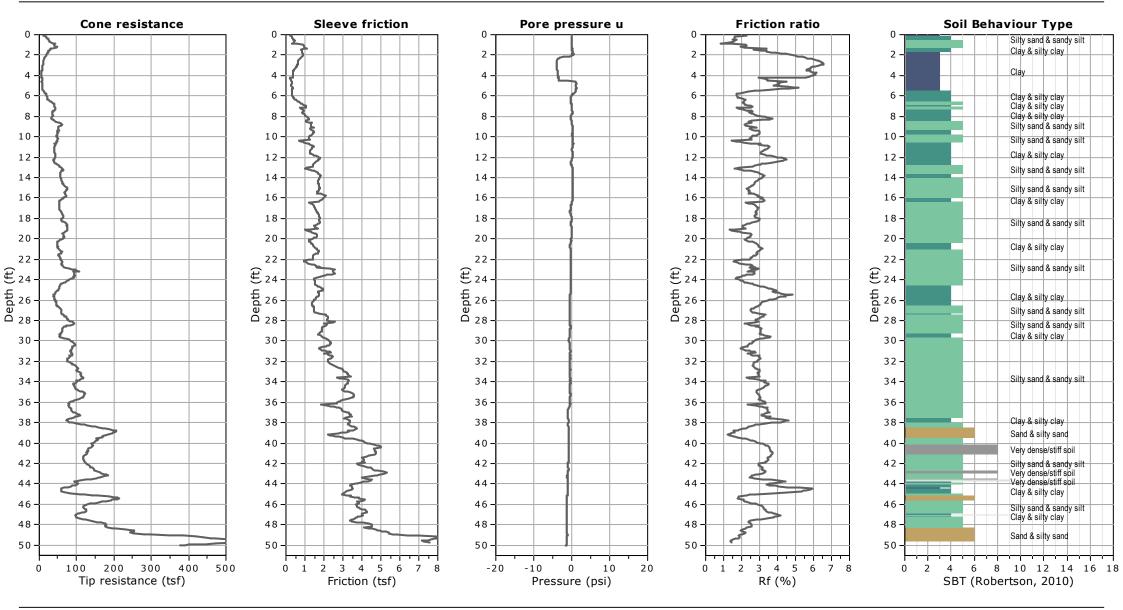
Project: Feffer Geological Consulting / New Urban-Metrowalk

Location: Santa Clarita, CA


CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 4/16/2020, 1:17:47 PM Project file:

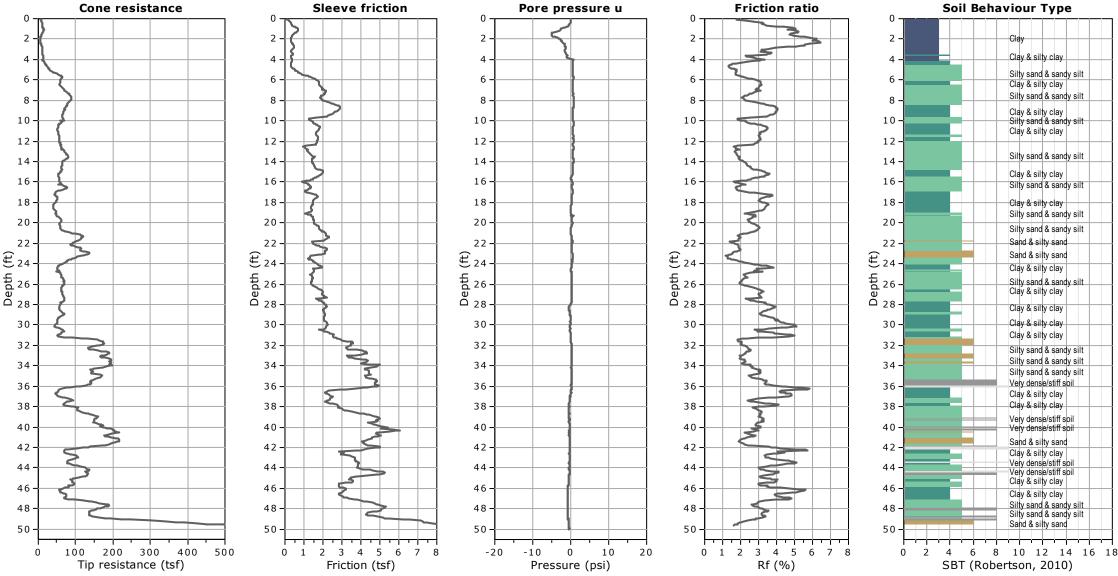
CPT-1 Total depth: 50.07 ft, Date: 4/15/2020

Project: Feffer Geological Consulting / New Urban-Metrowalk


Location: Santa Clarita, CA

Project: Feffer Geological Consulting / New Urban-Metrowalk

Location: Santa Clarita, CA

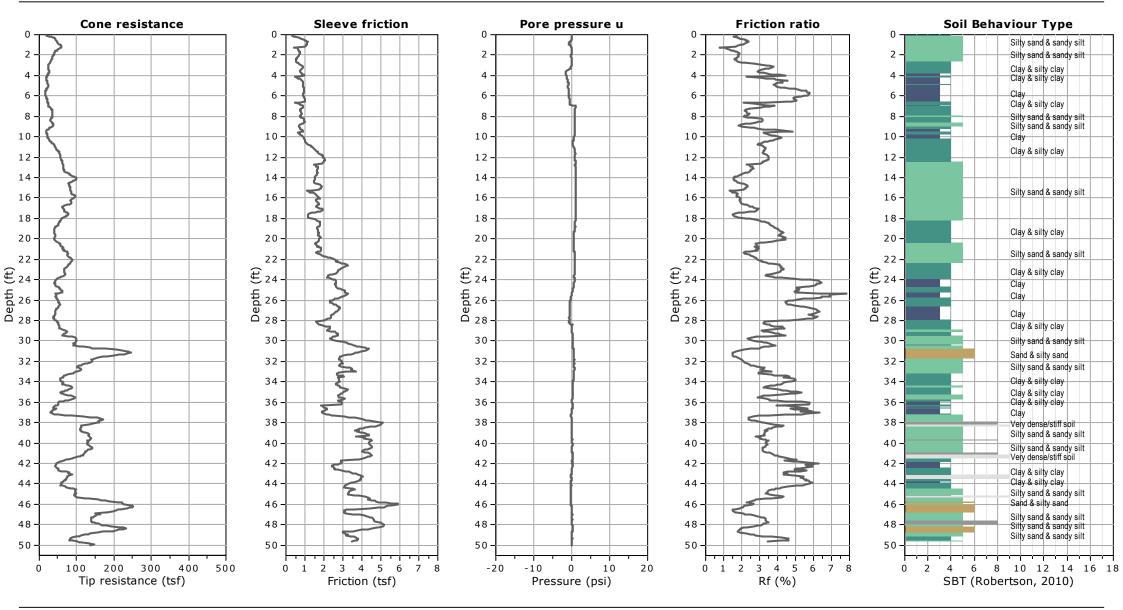


CPT-3 Total depth: 50.07 ft, Date: 4/15/2020

Project: Feffer Geological Consulting / New Urban-Metrowalk

Location: Santa Clarita, CA

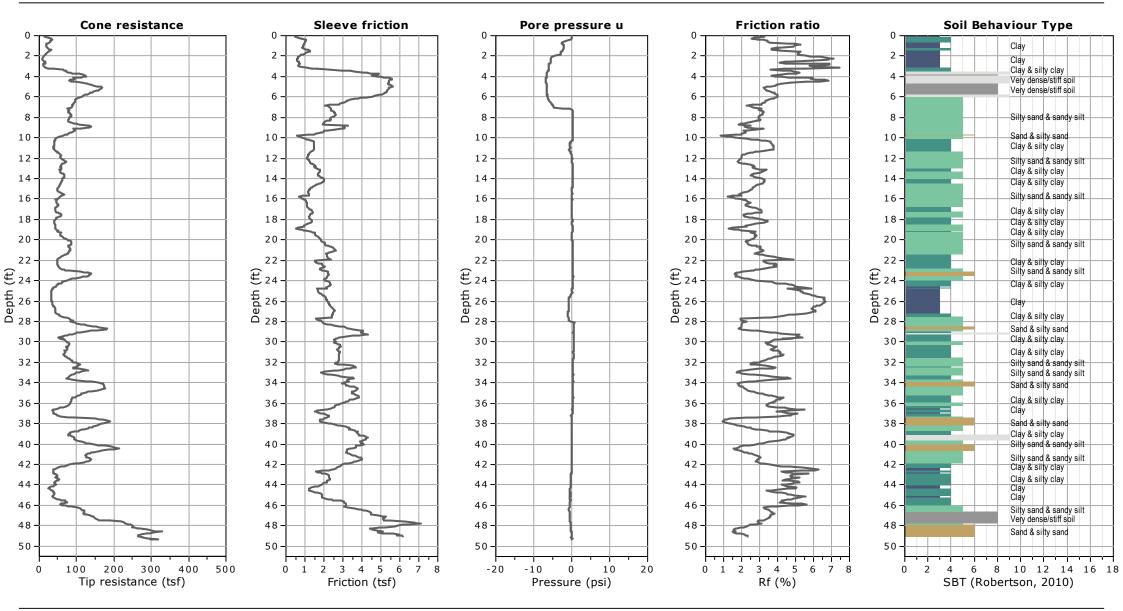
CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 4/16/2020, 1:19:24 PM Project file:


CPT-4

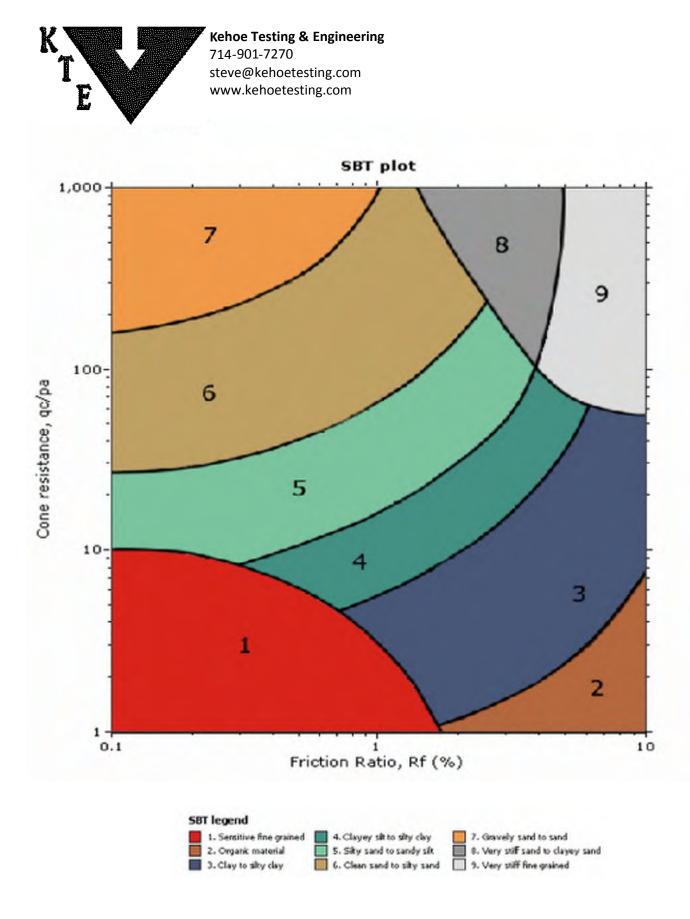
Total depth: 50.01 ft, Date: 4/15/2020

Project: Feffer Geological Consulting / New Urban-Metrowalk

Location: Santa Clarita, CA



CPT-5 Total depth: 50.03 ft, Date: 4/15/2020



Project: Feffer Geological Consulting / New Urban-Metrowalk

Location: Santa Clarita, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 4/16/2020, 1:20:08 PM Project file:

APPENDIX 'B'

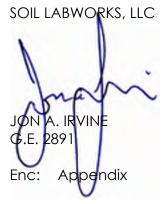
Laboratory Testing & Engineering

SL20.3331 June 3, 2020

Feffer Geological Consulting 1990 S. Bundy Drive 4th Floor Los Angeles, California 90025

Attn: Joshua R. Feffer

Subject: Laboratory Testing


Site: Terminus of Lost Canyon Road Canyon Country, Santa Clarita, California

Job: FEFFER/NEW URBAN WEST, INC.-METRO WALK – 2445-04

Laboratory testing for the subject property was performed by Soil Labworks, LLC., under the supervision of the undersigned Engineer. Samples of the earth materials were obtained from the subject property by personnel of Feffer Geological and transported to the laboratory of Soil Labworks for testing and analysis. The laboratory tests performed are described and results are attached.

Services performed by this facility for the subject property were conducted in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions.

Respectfully Submitted:

2500 Townsgate Road, Suite E, Westlake Village, California 91361 (805) 370-1338 FAX (805) 371-4693

APPENDIX

Laboratory Testing

Sample Retrieval - Drill Rig

Samples of earth materials were obtained at frequent intervals by driving a thick-walled steel sampler conforming to the most recent version of ASTM D 3550/D 3550M-17 with successive drops of a 140 pound hammer falling 30". The earth material was retained in brass rings of 2.416 inches inside diameter and 1.00 inch height. The central portion of the sample was stored in close-fitting, water-tight containers for transportation to the laboratory. Standard Penetration Tests (SPT) were performed at discrete intervals within the 8 inch diameter, hollow stem auger borings drilled on the site. The tests were performed using the 1-3/8 inch inside diameter, split-barrel sampler in accordance with ASTMD1586-11. Standard penetration test samples were retained in air-tight bags.

Moisture Density

The field moisture content and dry density were determined for each of the soil samples. The dry density was determined in pounds per cubic foot following ASTM 2937-17e2. The moisture content was determined as a percentage of the dry soil weight conforming to ASTM 2216-19. The results are presented below in the following table. The percent saturation was calculated on the basis of an estimated specific gravity. Description of earth materials used in this report and shown on the attached Plates were provided by the client.

Test Pit/Boring No.	Sample Depth (Feet)	Soil Type	Dry Density (pcf)	Moisture Content (percent)	Percent Saturation (Gs=2.65)
B1	5	Alluvium	94.3	21.8	77
B1	10	Alluvium	113.5	1.9	11
B1	15	Alluvium	98.5	6.0	23
B1	20	Alluvium	101.3	8.8	37
B1	25	Alluvium	99.3	5.2	21
B1	30	Alluvium	109.0	4.9	25
B1	35	Alluvium	120.8	3.9	28
B2	5	Alluvium	106.7	18.2	88
B2	10	Alluvium	95.5	13.8	50
B2	15	Alluvium	105.2	10.0	46
B2	20	Alluvium	108.9	8.8	45
B2	25	Alluvium	102.8	13.1	57
B2	30	Alluvium	110.6	5.1	27
B2	35	Alluvium	105.8	7.5	36

SL20.333119. June 3, 2020

Moisture Density (continued)

Test Pit/Boring No.	Sample Depth (Feet)	Soil Type	Dry Density (pcf)	Moisture Content (percent)	Percent Saturation (Gs=2.65)
B2	40	Alluvium	109.1	7.4	38
B2	45	Alluvium	106.2	15.7	75
B2	50	Alluvium	111.4	8.0	44
В3	5	Alluvium	108.0	10.9	54
В3	10	Alluvium	108.6	4.5	23
В3	15	Alluvium	105.7	8.8	41
B3	20	Alluvium	104.0	8.6	39
B3	25	Alluvium	108.3	6.7	34
B3	30	Alluvium	102.3	11.3	49
B4	5	Alluvium	105.2	14.4	67
B4	10	Alluvium	97.0	7.3	27
B4	15	Alluvium	107.4	9.2	45
B4	20	Alluvium	100.8	11.0	45
B5	5	Alluvium	109.3	15.4	80
B5	10	Alluvium	96.9	23.2	87
B5	15	Alluvium	109.1	6.5	33
B5	20	Alluvium	103.9	11.8	53
B5	25	Alluvium	113.3	12.1	70
B5	30	Alluvium	115.8	3.9	24
B5	35	Alluvium	113.5	4.0	23
B5	40	Alluvium	108.4	5.3	27
B5	45	Alluvium	111.0	12.2	66
B5	50	Alluvium	116.8	4.4	28
B6	5	Alluvium	111.0	10.4	56
B6	10	Alluvium	99.4	7.7	31
B6	15	Alluvium	107.3	7.2	35
B6	20	Alluvium	115.1	3.5	21
B6	25	Alluvium	113.9	5.9	35
B6	30	Alluvium	109.8	9.9	52
B6	35	Alluvium	101.1	8.8	37
B7	5	Alluvium	103.8	10.4	47
B7	10	Alluvium	96.7	8.2	31
B7	15	Alluvium	98.5	7.8	30
B7	20	Alluvium	115.0	5.7	35
B7	25	Alluvium	99.4	12.5	50
B7	30	Alluvium	110.1	16.7	88
B7	35	Alluvium	103.8	13.1	56

Moisture Density (continued)

Test Pit/Boring No.	Sample Depth (Feet)	Soil Type	Dry Density (pcf)	Moisture Content (percent)	Percent Saturation (Gs=2.65)
B7	40	Alluvium	102.1	12.6	56
B7	45	Alluvium	107.7	7.2	36
B7	50	Alluvium	105.0	11.5	53

Compaction Character

Compaction tests were performed on bulk samples of the earth materials in accordance with ASTM D1557-12ei. The results of the tests are provided on the table below and on the "Moisture-Density Relationship", A-Plates. The specific gravity of the fill/alluvium was estimated from the compaction curves.

Test	Sample	Soil Type	Maximum	Optimum
Pit/Boring	Depth		Dry Density	Moisture Content
No.	(Feet)		(pcf)	(Percent)
B5	0-10	Fill/Alluvium	128.9	9.4

Shear Strength

The peak and ultimate shear strengths of the alluvium and fill/alluvium were determined by performing consolidated and drained direct shear tests in conformance with ASTM D3080/D3080M-11. The tests were performed in a strain-controlled machine manufactured by GeoMatic. The rate of deformation was 0.01 inches per minute. Samples were sheared under varying confining pressures, as shown on the "Shear Test Diagrams," B-Plates. The moisture conditions during testing are shown on the following table and on the B-Plates. The samples indicated as saturated were artificially saturated in the laboratory. All saturated samples were sheared under submerged conditions.

Test Pit/ Boring No.	Sample Depth (Feet)	Dry Density (pcf)	As-Tested Moisture Content (percent)
В3	15	105.7	23.8
B1	20	101.3	23.8
B6	25	113.9	25.3
B2	30	110.6	23.6

Consolidation

One-dimensional consolidation tests were performed on samples of the alluvium in a consolidometer manufactured by GeoMatic in conformance with ASTM D2435/D2435M-11. The tests were performed on 1-inch high samples retained in brass rings. The samples were initially loaded to approximately ½ of the field over-burden pressure and then unloaded to compensate for the effects of possible disturbance during sampling. Loads were then applied in a geometric progression and resulting deformation recorded. Water was added at a specific load to determine the effect of saturation. The results are plotted on the "Consolidation Test," C-Plates.

Expansion Index

The expansive character of the fill/alluvium was determined by performing Expansion Index Tests in accordance with UBC 18.2 and ASTM 4829-11. A bulk sample of earth material was compacted at a specific moisture content using one fifth the compacted energy for the modified proctor test. The sample was then saturated and the expansion measured. The results of the tests are provided on the following table.

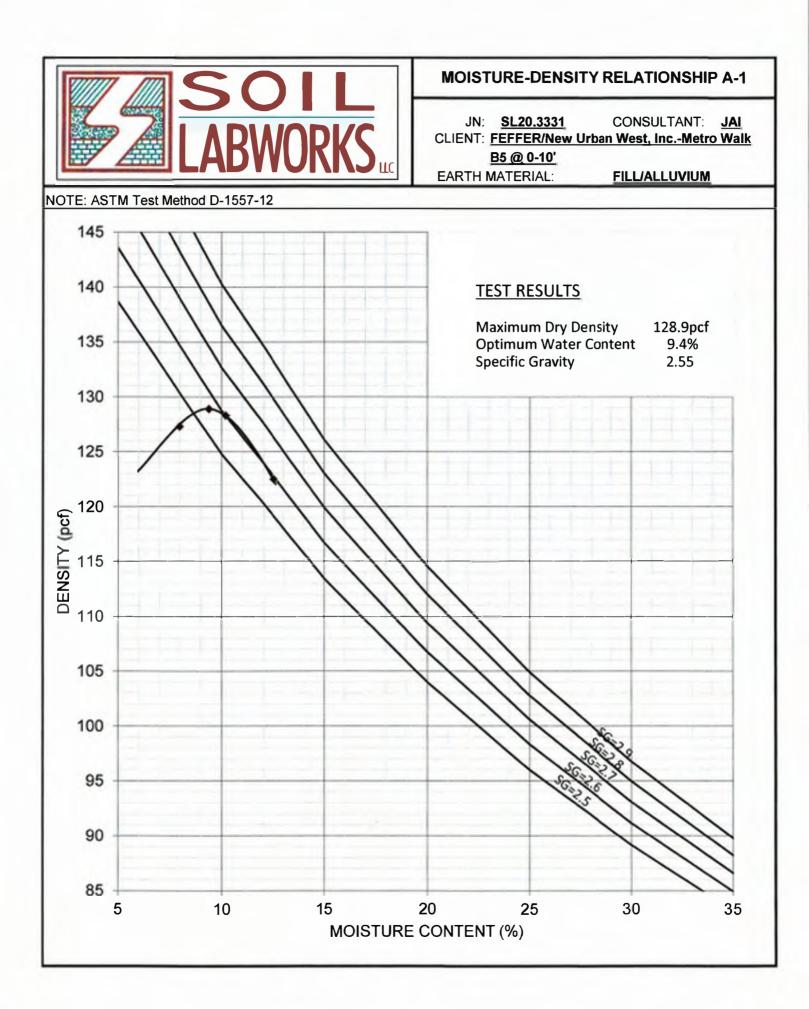
Test Pit No.	Sample Depth (Feet)	Soil Type	Expansion Index
B5	0-10	Fill/Alluvium	46

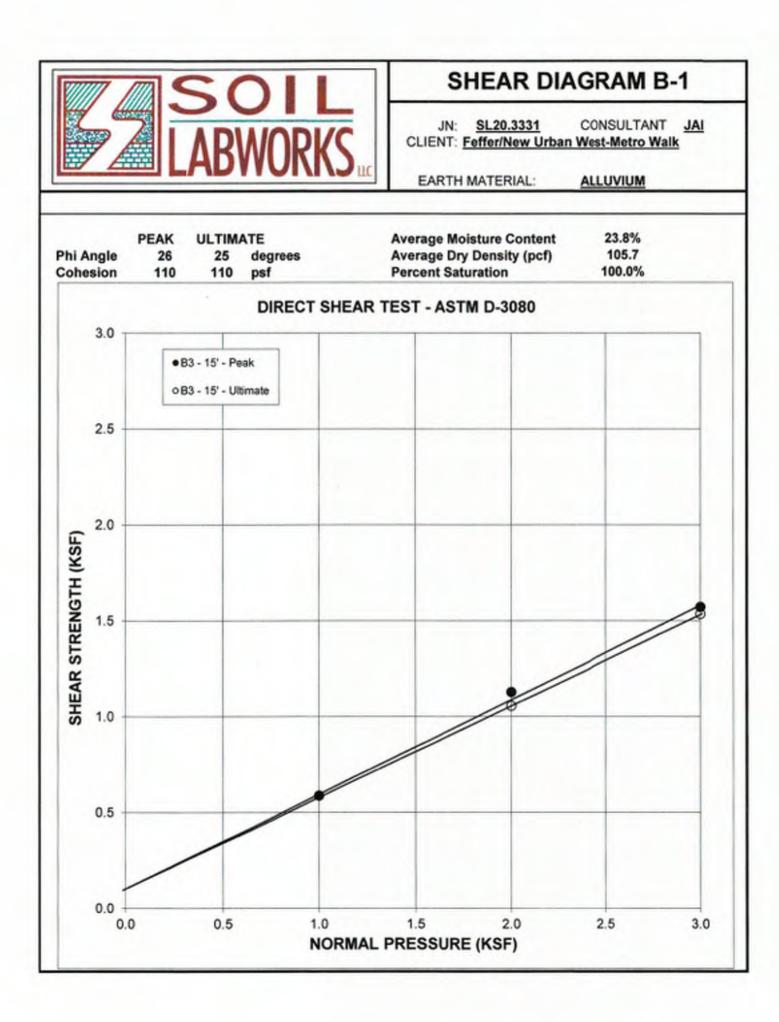
Atterberg Limits

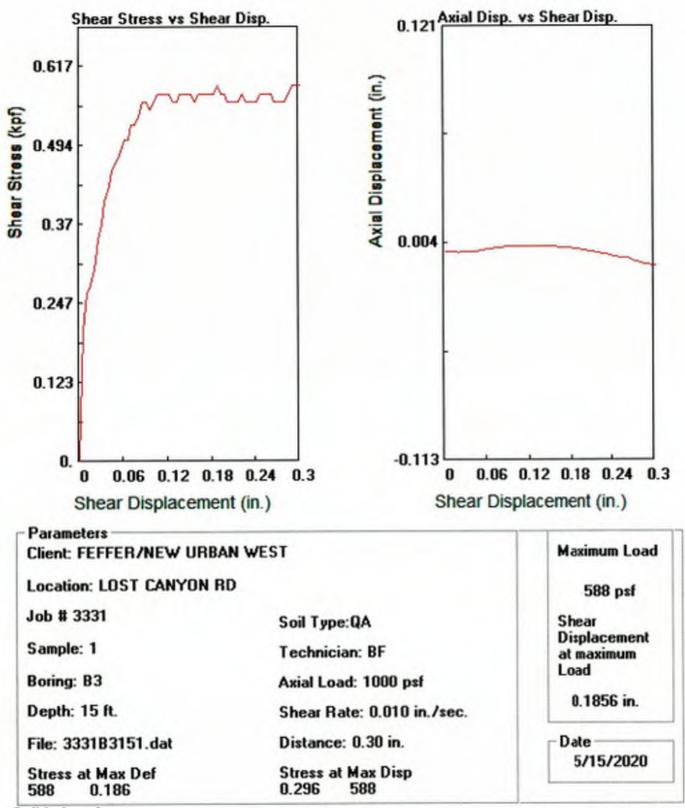
Atterberg limits determinations were performed on samples of the soil/alluvium in accordance with ASTMD4318-17e1. The test results are presented on the table below.

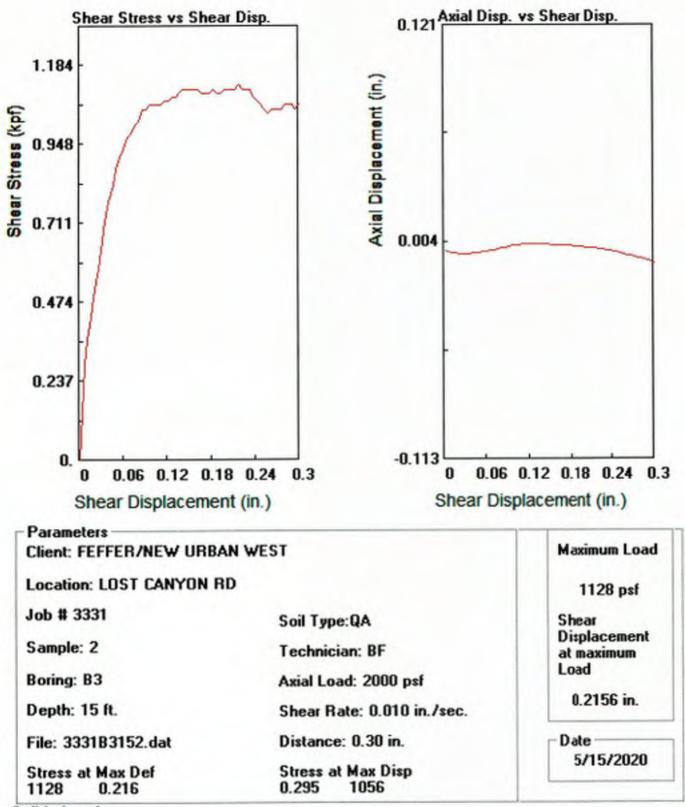
Test Pit/Boring No.	Sample Depth (Ft)	Soil Type	Liquid Limit	Plastic Limit	Plasticity Index
B2	5	Alluvium	37	21	16
B2	22.5	Alluvium	23	23	0
B5	27.5	Alluvium	31	23	8

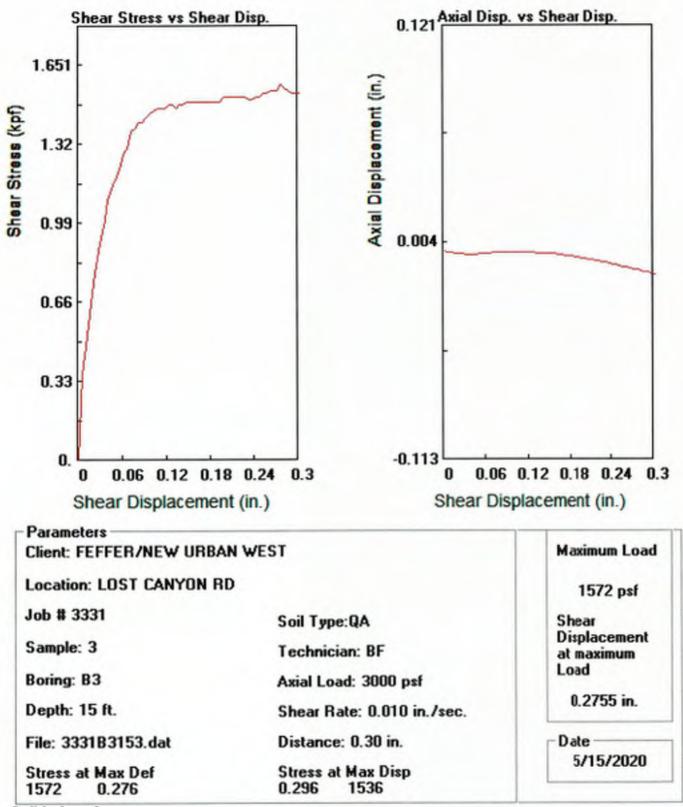
Grain Size Distribution

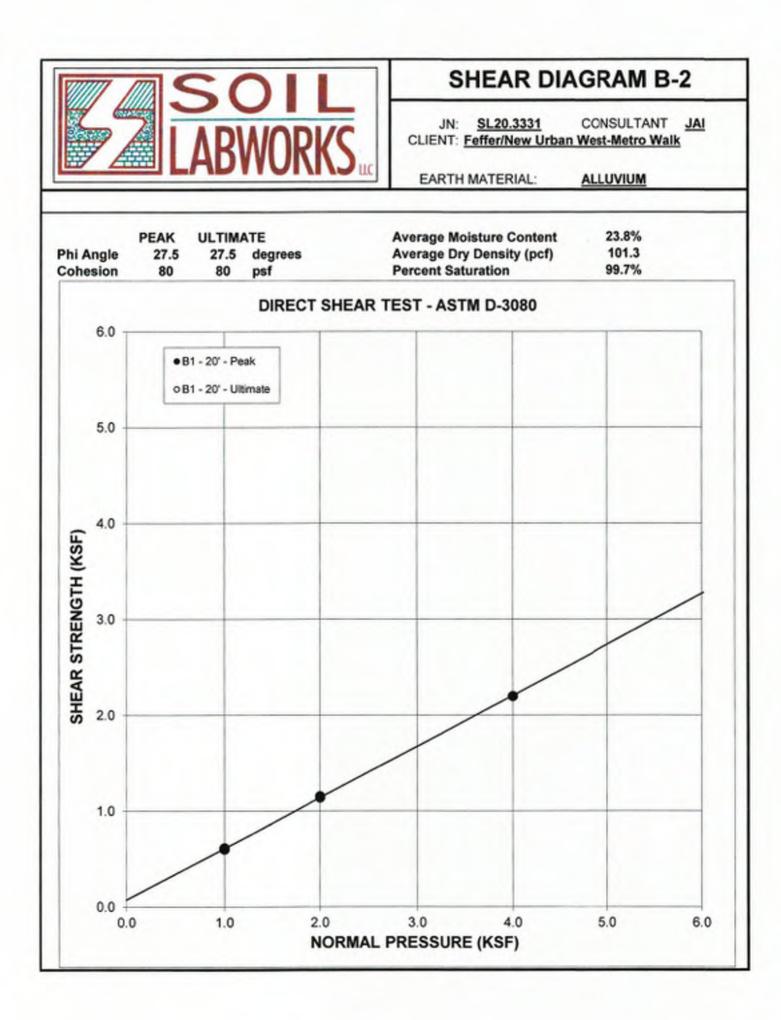

The amount of material in the soil finer than 1 No. 200 sieve was determined on selected samples in conformance with ASTM D1140-17. Wash sieving disperses clay and other fine material that are removed from the soil during the test. The percent of fine material in the soil sample is the calculated base on the loss of mass. The results are present in the table below.

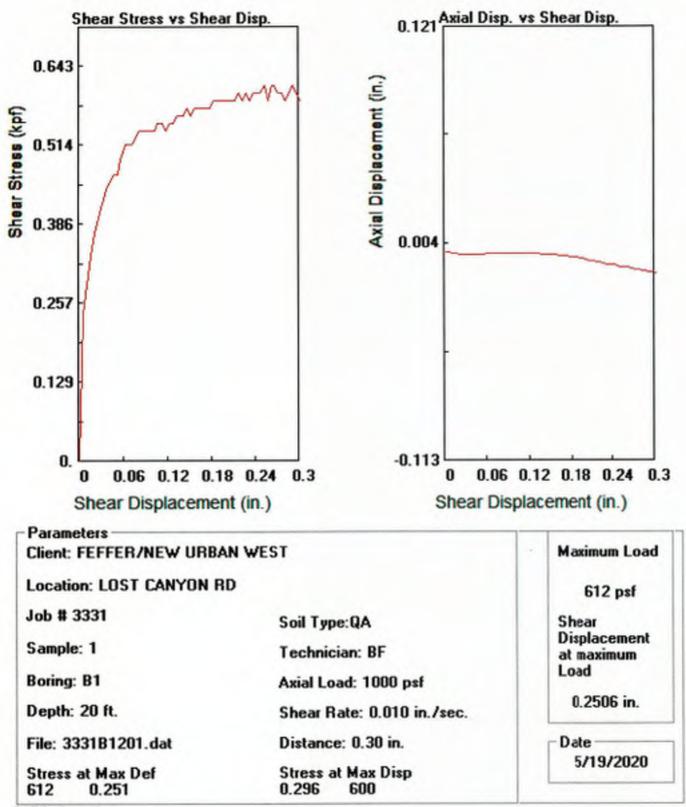


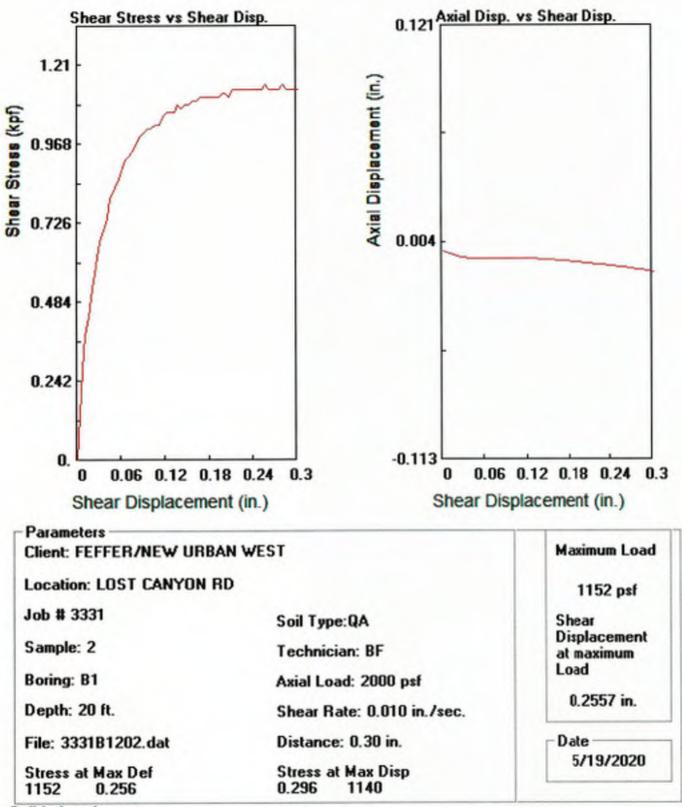

SL20.333119. June 3, 2020

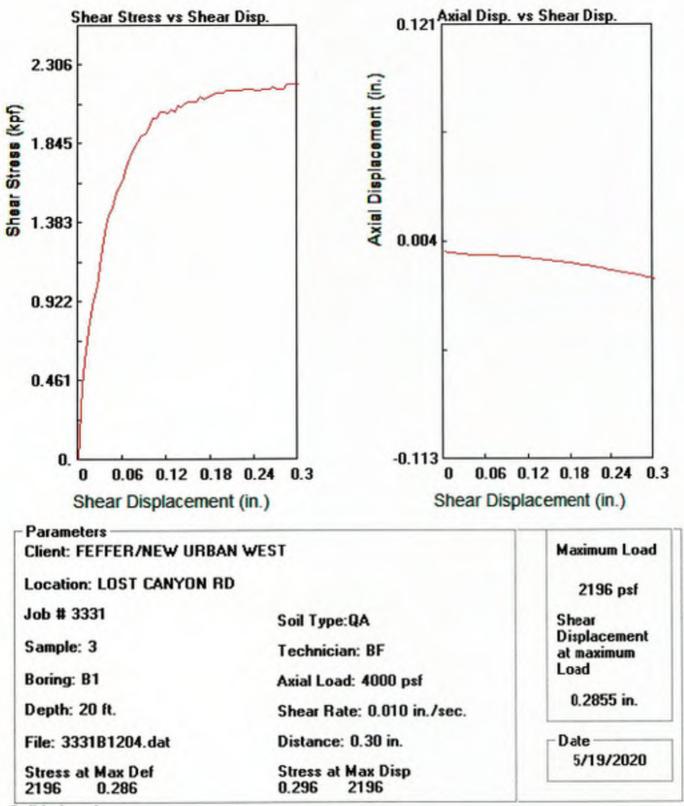

Grain Size Distribution (continued)

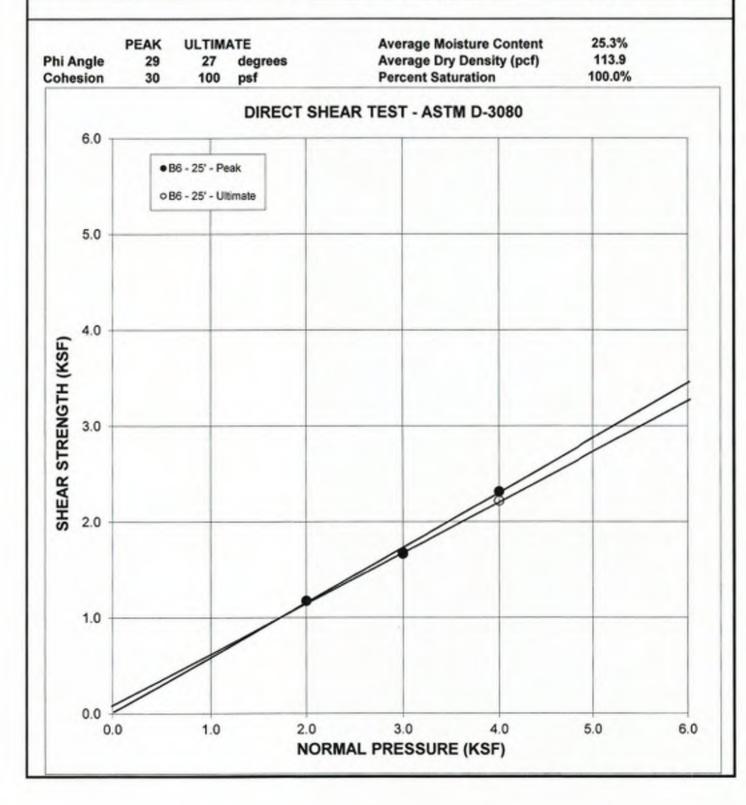

Boring No	Depth	Soil Type	(%) Passing 200 Sieve
B2	12.5	Alluvium	49.2
B5	17.5	Alluvium	52.0
B2	32.5	Alluvium	42.0
B5	47.5	Alluvium	75.7

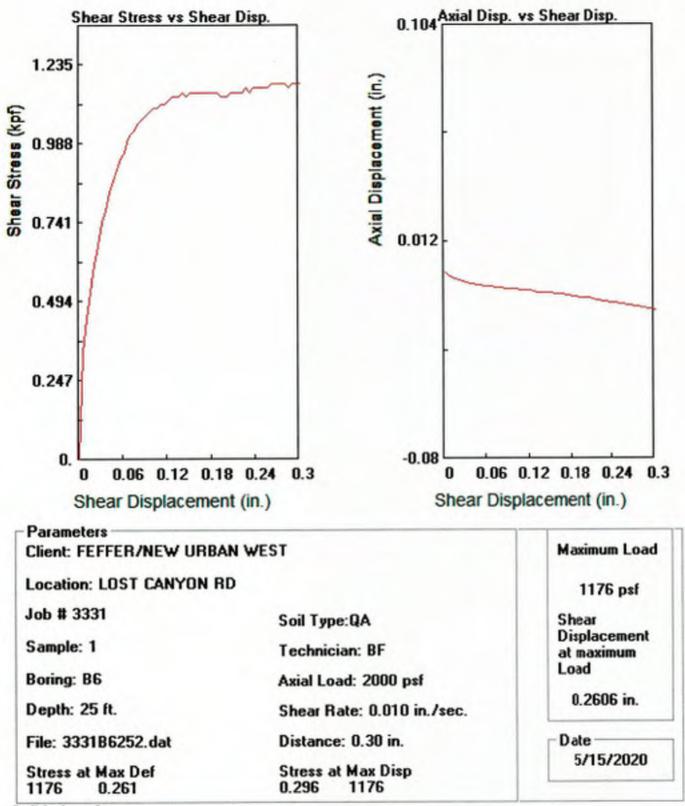


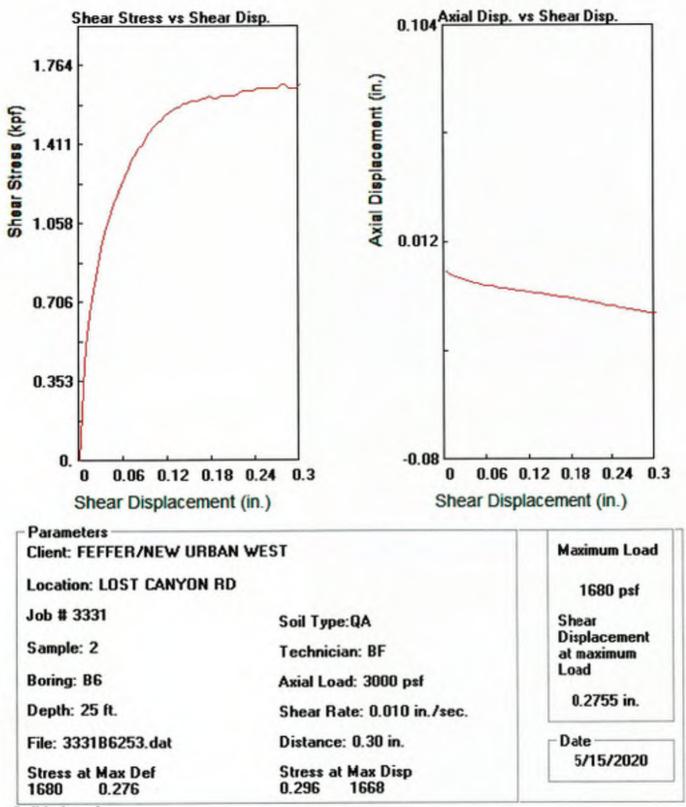


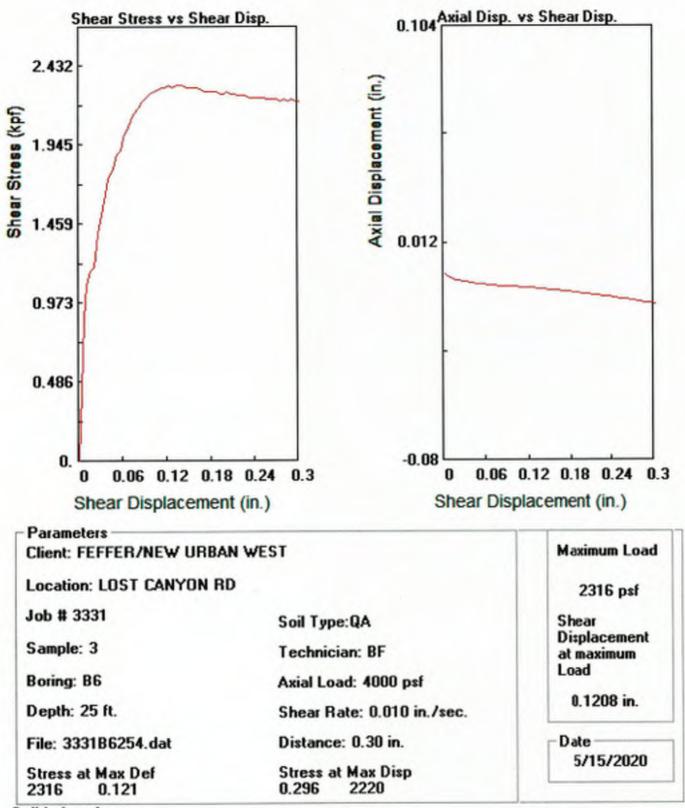


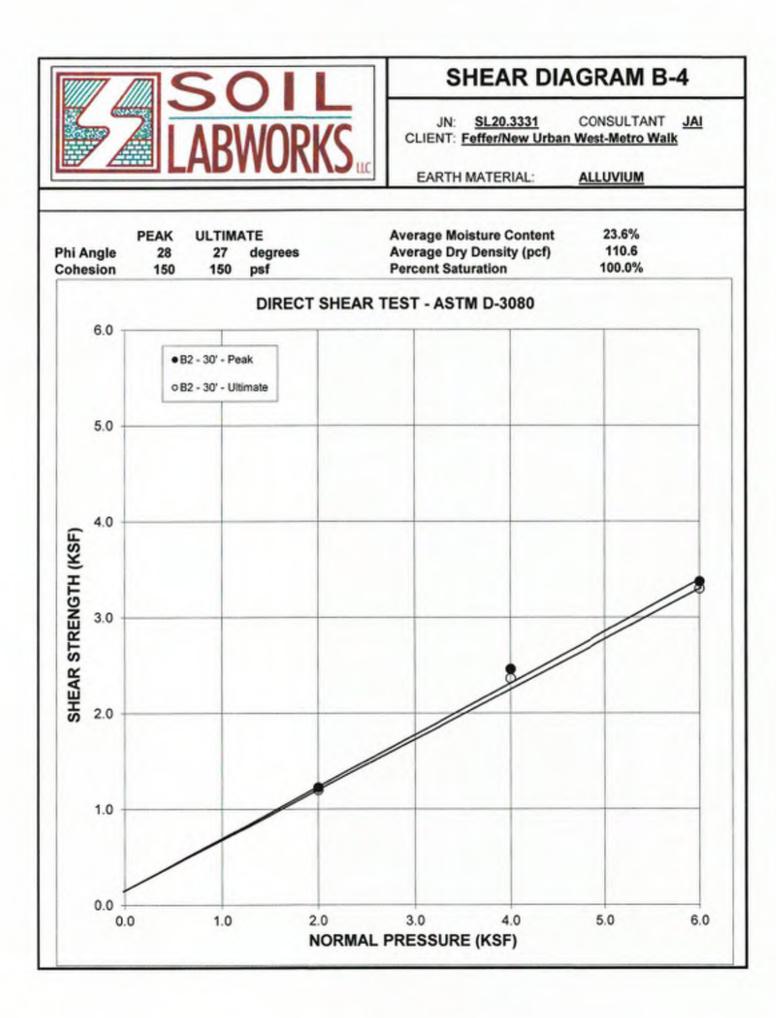


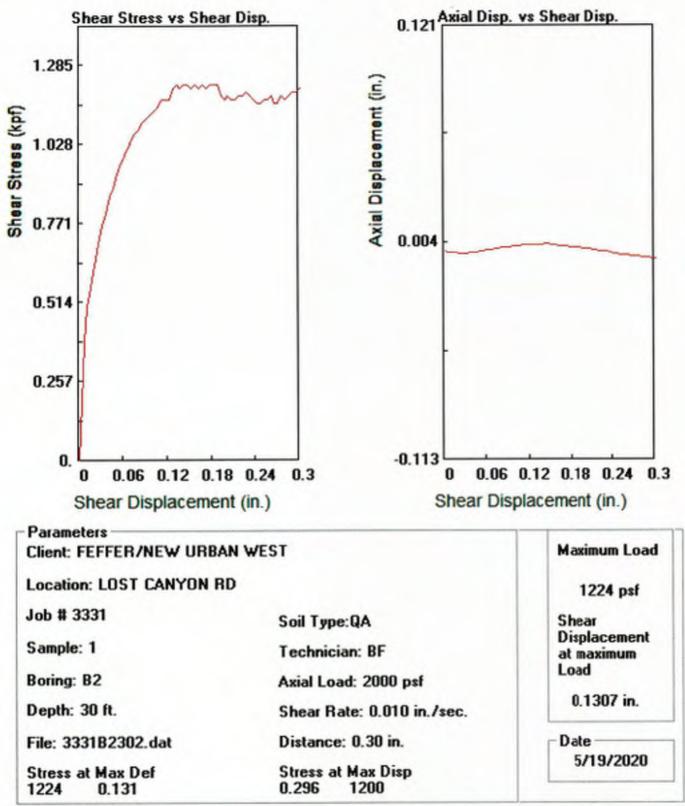


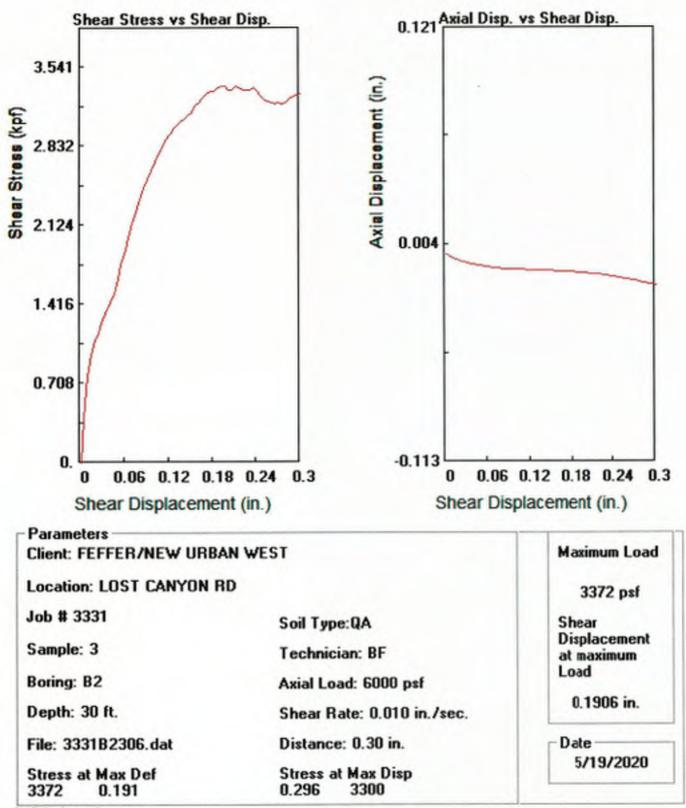

SHEAR DIAGRAM B-3

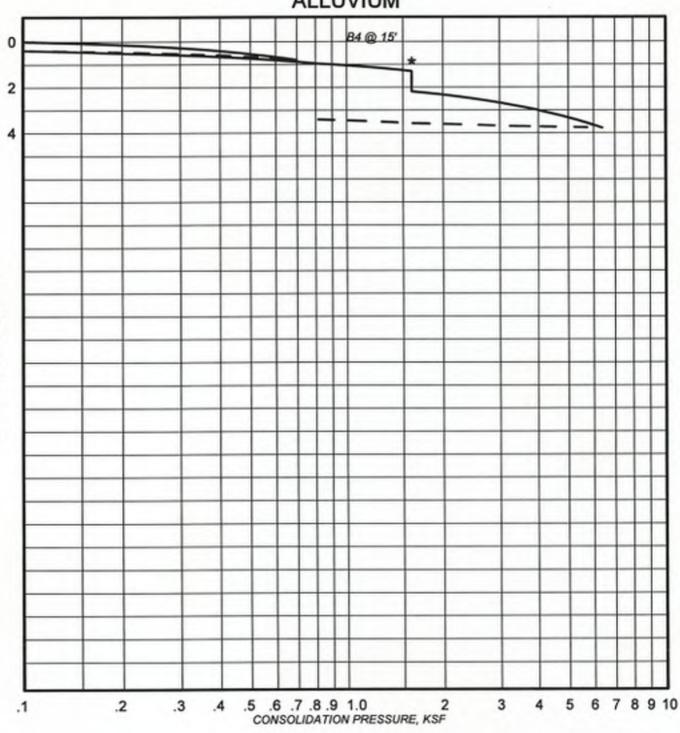

JN: <u>SL20.3331</u> CONSULTANT <u>JAI</u> CLIENT: Feffer/New Urban West-Metro Walk


EARTH MATERIAL:


ALLUVIUM



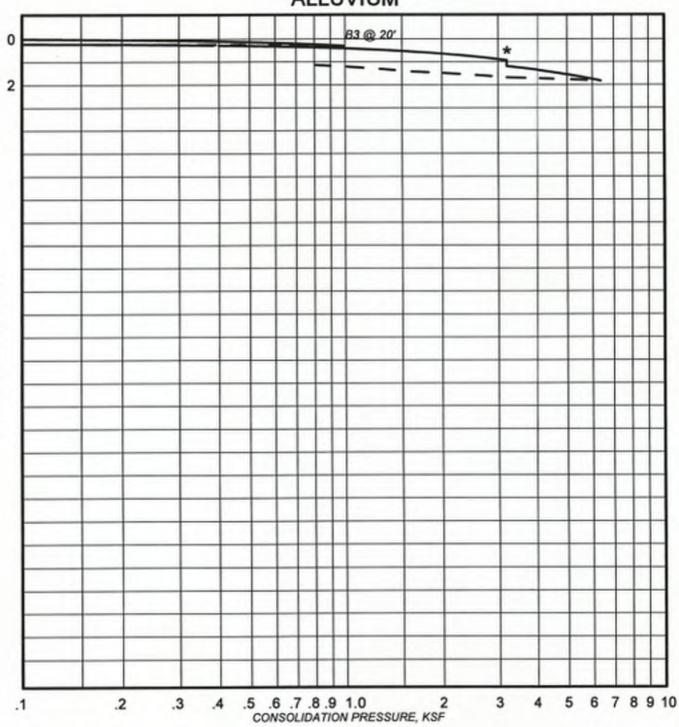




CONSOLIDATION TEST

PROJECT: 3331 FEFFER/NEW URBAN WEST-METRO WALK SAMPLE: B4 @ 15'

ALLUVIUM


PERCENT CONSOLIDATION

* Water Added

PLATE:

CONSOLIDATION TEST PROJECT: 3331 FEFFER/NEW URBAN WEST-METRO WALK

SAMPLE: B3 @ 20'

ALLUVIUM

PERCENT CONSOLIDATION

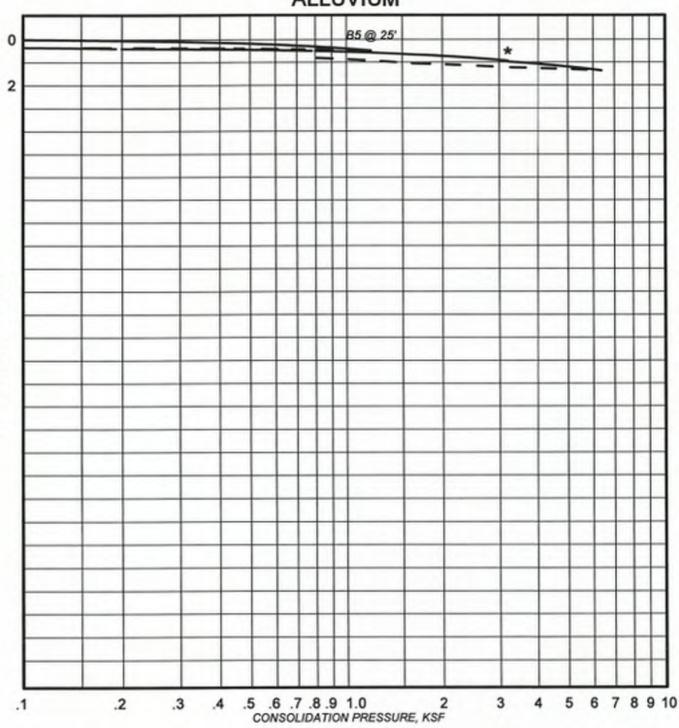

* Water Added

PLATE:

-

CONSOLIDATION TEST

PROJECT: FEFFER/NEW URBAN WEST, INC.-METRO WALK SAMPLE: B5 @ 25'

ALLUVIUM

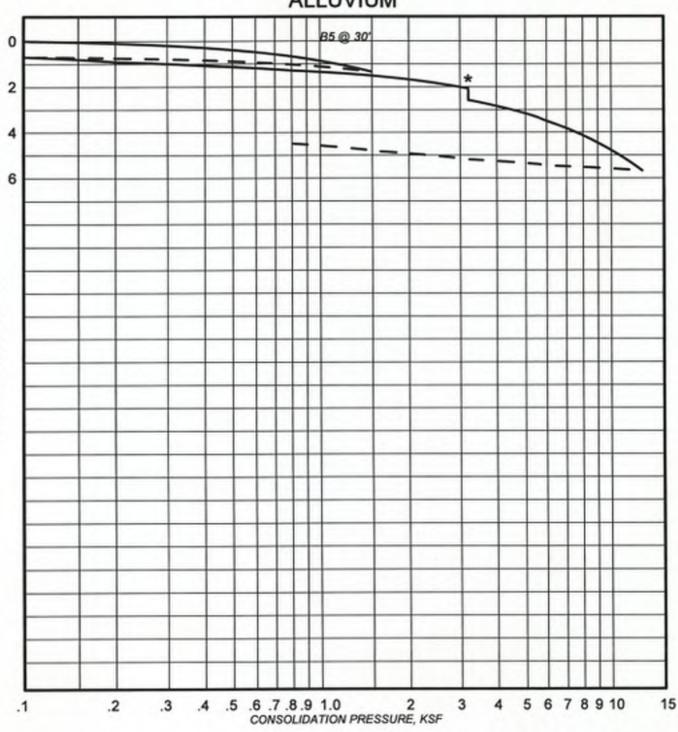

* Water Added

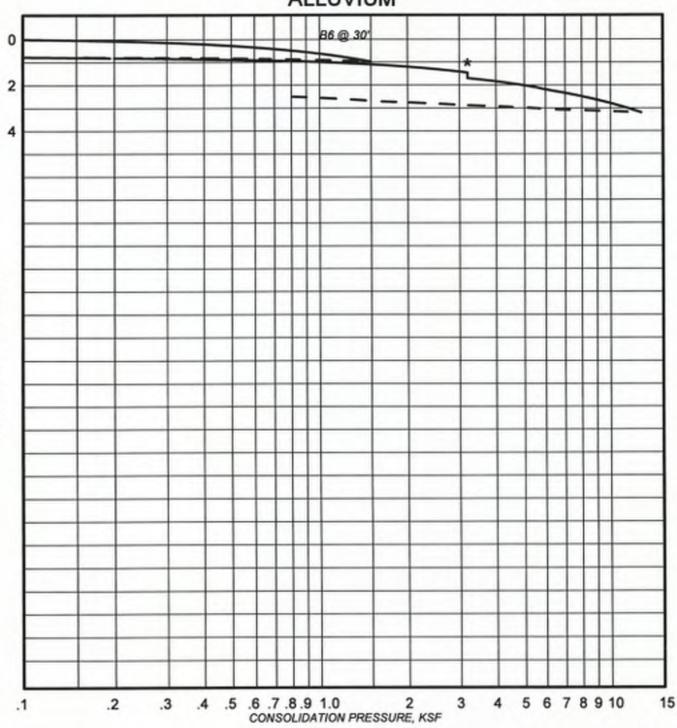
PLATE:

CONSOLIDATION TEST

PROJECT: FEFFER/NEW URBAN WEST, INC.-METRO WALK SAMPLE: B5 @ 30'

SAMPLE: B5 @ 30

ALLUVIUM


* Water Added

PERCENT CONSOLIDATION

PLATE:

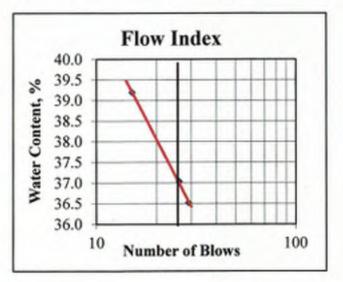
CONSOLIDATION TEST PROJECT: 3331 FEFFER/NEW URBAN WEST, INC.-METRO WALK

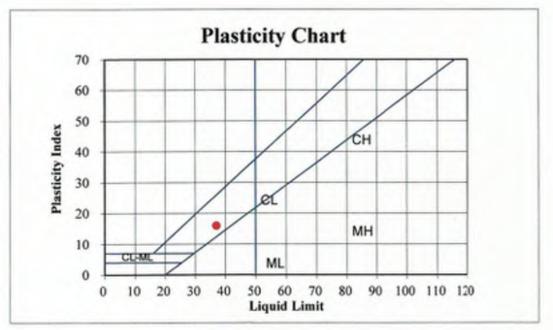
SAMPLE: B6 @ 30'

ALLUVIUM

* Water Added

PERCENT CONSOLIDATION


PLATE:


PLASTICITY INDEX

Job Name: FEFFER/NEW URBAN WEST Sample ID: B2 @ 5' Soil Description: CL

DATA SUMMARY

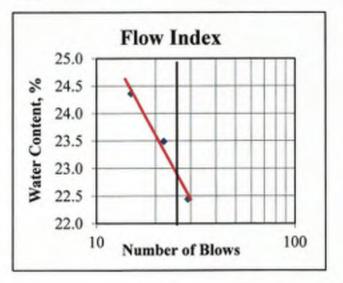
DATA SUMMARY		TEST RESULTS			
Number of Blows:	15	26	29	LIQUID LIMIT	
Water Content, %	39.2	37.0	36.5	PLASTIC LIMIT	
Plastic Limit:	21.4	21.1	Р	LASTICITY INDEX	

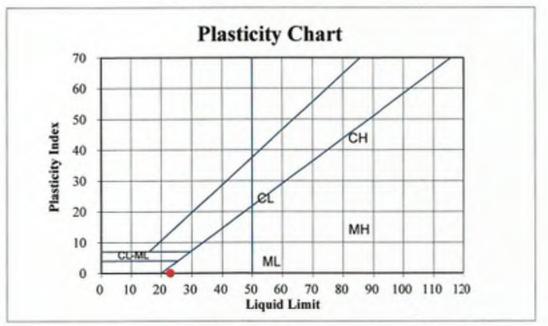
ASTM D-4318

37

21

16


SOIL LABWORKS LLC


PLASTICITY INDEX

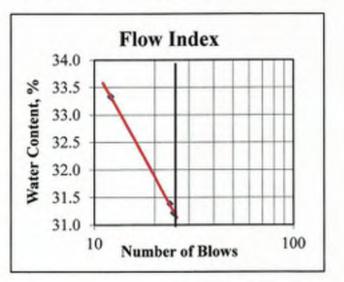
Job Name: FEFFER/NEW URBAN WEST Sample ID: B2 @ 22.5' Soil Description: SM/Non Plastic

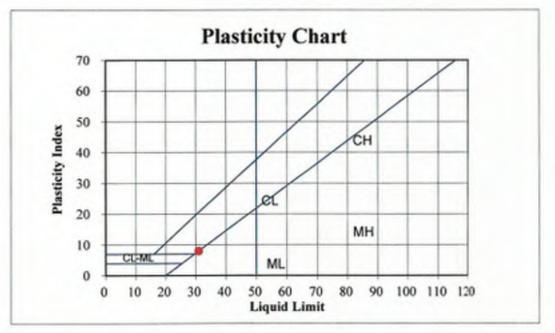
DATA SUMMARY

DATA SUMMARY			TEST RESULTS					
Number of Blows:	15	22	29	LIQUID LIMIT	23			
Water Content, %	24.4	23.5	22.4	PLASTIC LIMIT	23			
Plastic Limit:	23.4	23.5	Р	LASTICITY INDEX	0			

June 3, 2020

ASTM D-4318


SOIL LABWORKS LLC


PLASTICITY INDEX

Job Name: FEFFER/NEW URBAN WEST Sample ID: B2 @ 27.5' Soil Description: ML

DATA SUMMARY

			TEST RESULTS		
12	24	25	LIQUID LIMIT	31	-
33.3	31.4	31.2	PLASTIC LIMIT	23	
23.1	23.0	Р	LASTICITY INDEX	8	
	33.3	33.3 31.4	33.3 31.4 31.2	12 24 25 LIQUID LIMIT 33.3 31.4 31.2 PLASTIC LIMIT	12 24 25 LIQUID LIMIT 31 33.3 31.4 31.2 PLASTIC LIMIT 23

June 3, 2020

ASTM D-4318

SOIL LABWORKS LLC

June 17, 2020

SEL File: 46769-1 SEL Report No.: G-20-2171

Feffer Geological Consulting Attn.: Ms. Yvette Hays 1990 S. Bundy Drive, 4th floor Los Angeles, CA 90025

> RE: New Urban West Inc.-Metro Walk 2445-04, Terminus of Lost Canyon Rd. Canyon Country-Santa Clarita, CA APN: 2840-004-009

SUBJECT: R-Value

STANDARD: Cal Test Method 301

SAMPLE LOCATION: as above

Date Sampled: 6/5/20

Sampled by: E. Vasilon

REPORT OF TESTS

In compliance with the request of your authorized representative, we have conducted the subject test as per project requirements for the above-referenced project.

The bulk soil sample was delivered to our laboratory by your representative. Test result is as follow:

Boring	Depth (ft)	Soil Type	R-Value at 300 psi Exudation Pressure					
Hole No.	Depin (it)	Son Type	Uncorrected	Corrected	By Expansion			
B-7	0-10	Olive Brown Silty SAND	7	7	16			

Assumed Ti-5 G.F-2.5 W-2082.40

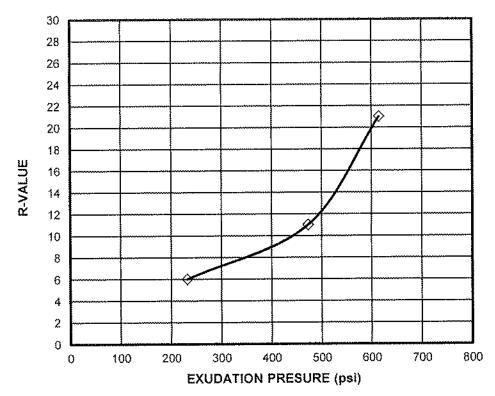
Should you have any questions regarding the contents of this report, please call.

Respectfully submitted, SMITH-EMERY LABORATORIES

ANGELITO CABANILLA Geotechnical Laboratory Manager

AC/ac cc: Addressee

SMITH-EMERY LABORATORIES


An Independent Commercial Testing Laboratory, Established 1904 1195 N. Tustin Anahiem, California 92807 • Tel. (714) 238-6133 • Fax (714) 238-6144

Report No.: A20-141

(Cal Trans 3	01)
SEL JOB #:	46769-1
Date Sample:	6/5/2020
Project:	New Urban West IncMetro Walk
Depth:	0-10
SOIL TYPE:	Olive Brown Silty Sand
Sample #	877
Location:	2445-04 Terminus of Los Canyon Rd.

SPECIMEN	A	В	С
EXUDATION PRESSURE (psi)	615	473	232
PREPARED WEIGHT (g)	1100	1100	1100
FINAL WATER ADDED (g)	20	40	70
WEIGHT, SOIL & MOLD (g	3207	3240	3254
WEIGHT, MOLD (g)	2094	2100	2095
HEIGHT (in)	2.72	2.75	2.71
EXPANSION DIAL	0.0034	0.0011	0.0005
STABILOMETER @ 1000 lb	0	0	0
STABILOMETER @ 2000 lb	121	134	140
TURNS DISPLACEMENT	3.76	4.56	5.18
(2.5/d)*((Pv/Ph)-1)+1	1.21	1.11	1,07
100/Above	82	90	94
R-VALUE TEST UnCorr.	18	10	6
R-VALUE TEST Corr.	21	11	6

VALUE AT 300 EXUDATION P	
Rvalue uncorrected:	7
Rvalue Corrected:	7
Rvalue by expansion:	16

Moisture: n/a	R-VALUE TEST
Assumed Ti-5 G.F-2.5 W-2082.40	Smith-Emery Laboratory

791/781 East Washington Blvd., Los Angeles, CA 90021; Tel (213) 745-5333; Fax (213) 749-8621 LABORATORY COMPACTION CHARACTERISTICS

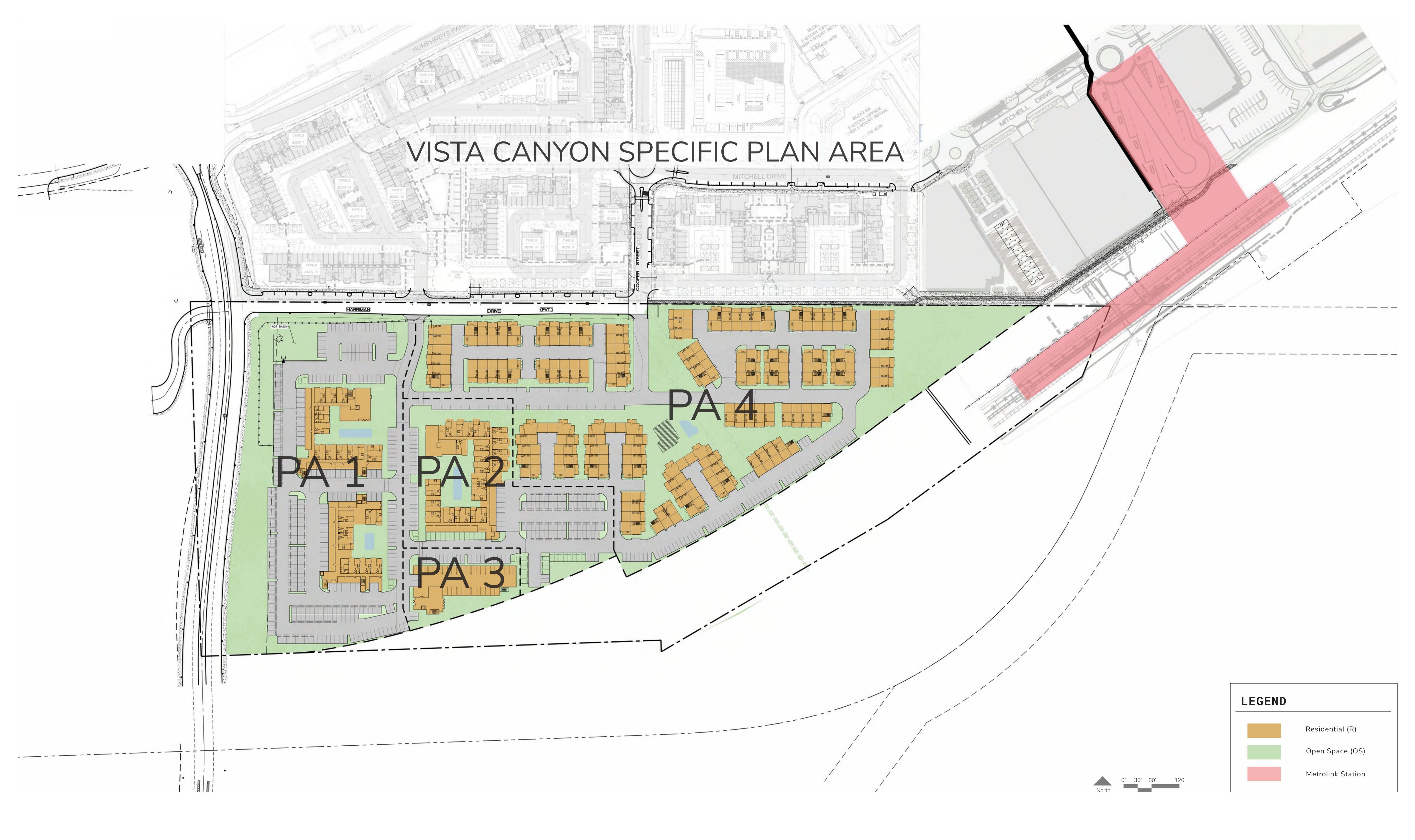
ASTM D1557-12

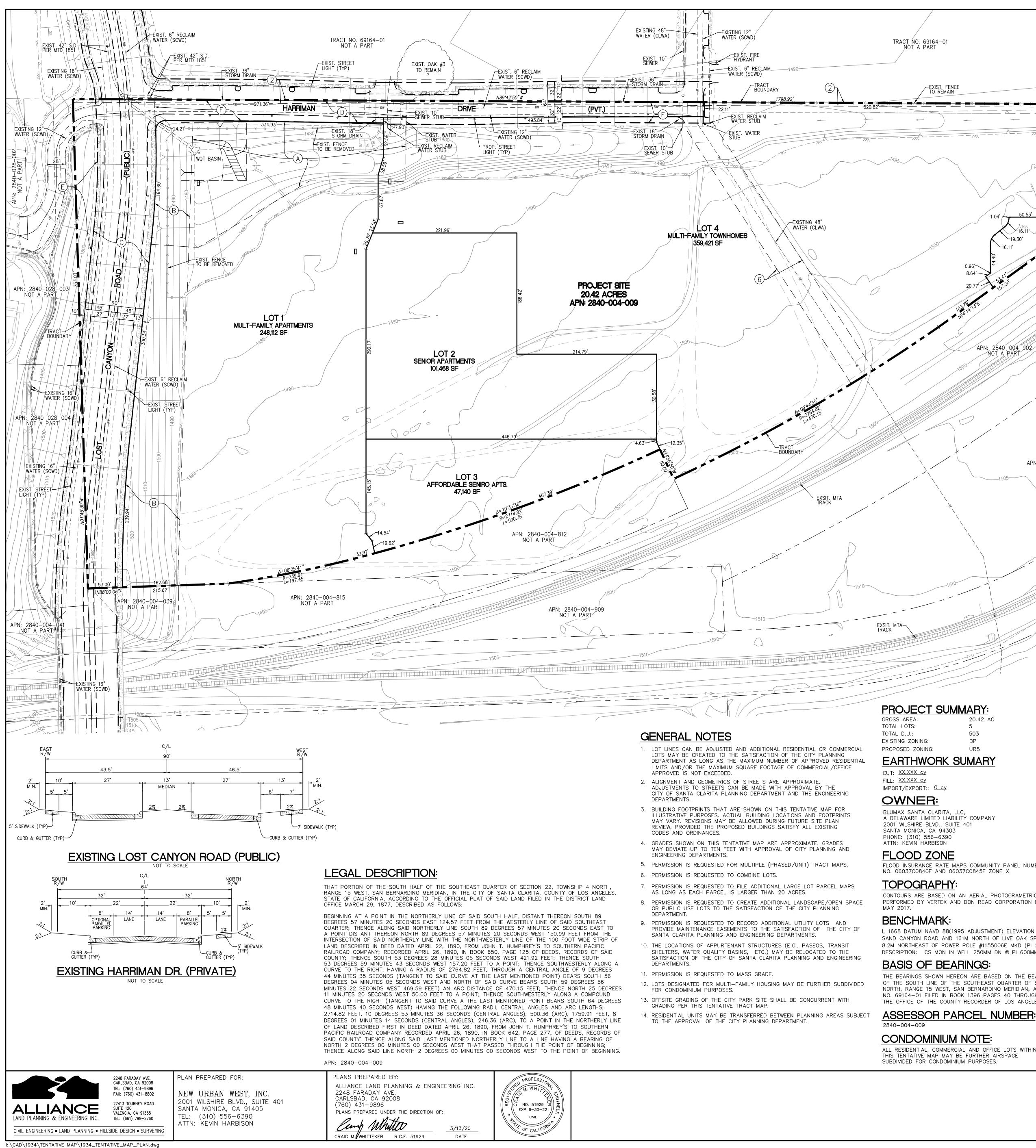
Client:	Feff										0.004						-		. Ref No.:	
Project:																				
Location:	-							anyon	Road	, Can	yon C	ountry	Santa	a Clarita	, CA					
Soil Class:	-		rowi	1 Sil	ty S.	ANI)										-		Received:	
Source:	onsi	te															-		te Tested:	
Remarks:	-								- Č			orrection	-			_			mpled by:	
Equipment:						478)rying:									(+)#4≤25%	C	alibrated Mo	
Rammer	r: Me	echni	ical	10 lb	s x	K	N	Ianual			_	PARATIC					(+) 3/8"≤25%	L	4" dia.	6" dia
	Pie]	Roun					5.5 ll			x We	t	Dry	Method		(+) 3/4"≤30%		943	2124
Rock Correc	ction:				OD	Gs.:			_	MC	%: 2.0			et'd #4	1.3		-			
ZA	V Ass	sumed	Gs.: _			_	6 Pass	#4	98.7			Vater densit				ted Mo	old Vol. cc:	9	43	
Soil Gs ass:	2.70			Bori	ing N	o.: 1	3-7		Sam	nple No		1		epth (ft):	0-10		Water Density:	6	2.23	
Test no.								1			2		3	4		5	sieve siz	e	ret'd (g)	% ret'd
wt. of mol		et sc	oil (g	g)				4011.5		4154.	_	4178.0	_	4103.0			3/4	"		
wt. of mol							4	2011.0		2011.	_	2011.0	_	2011.0			3/8	"		
wt. of wet	: soil (g)					4	2000.5		2143.	.0	2167.0)	2092.0			#-	4 1	47.0	1.3
wet densit	ty of se	oil (g	g/cc))				2.121		2.27	3	2.298	3	2.218			Tota	1 1	1549.8	
wt. wet so	oil + ta	re (g	()					709.7	Γ	743.	.0	712.	3	721.6			pass #4 %Moi	st co	ontent	7.0
wt.dry soil								675.4		695.	.8	658.′	7	658.1			wet pass #4 (g)		12201.0
Wt of tare								182.3		176.	_	181.9	}	179.7			dry pass #4 (g)			11402.8
moisture c		t %						7.0		9.	_	11.	_	13.3			ASTM D127			
Density of								123.8		130.	_	129.0	_	122.3			wt OD (g)			
corrected 1		.		ent %	ó						1		1				wt SSD			
Density of	f soil (pcf)	corr	ected	d												wt in water (g)	, —		
Dry Density								119		12	4	129)	134			OD Gs			
100 % Satura			/					15.3		13.	.1	11.2	2	9.4			moist %	2.	0	
				Μ	lax D	ry D	ensit	y (pcf) :	130.	4	OW	С %	9.7		% Sat	uration	90.8			
		M	ax D					rected :			O	WC % Co	т		% Sat	uration				
															·			_]
									Moist	ture-D	ensity	Relation	iship							
	134									-										
	133 -									N										
	132 -																			
	102																			
	101									N										
	131 -													- Tany		70				
	131 - 130 -										7-			ZAV	@ Gs 2.	70				
														ZAV	@ Gs 2.'	70				
	130 - 129 -											-		ZAV	@ Gs 2.'	70				
	130 - 129 -													ZAV	@ Gs 2.	70				
	130 - 129 -												/	ZAV	@ Gs 2.'	70				
	130 - 129 -											X	/	ZAV	@ Gs 2.1	70				
	130 - 129 - (J2) 128 - 127 -										X		/	ZAV	@ Gs 2.	70				
	130 - 129 -													ZAV	@ Gs 2.'	70				
	130 - 129 - (J 28 - 128 - 127 - 126 - 126 - 125 -													ZAV	@ Gs 2.	70				
	130 - 129 - 129 - 128 - 127 - 127 - 126 - 125 - 125 - 124 -							·····						ZAV	@ Gs 2.	70				
	130 - 129 - 128 - 127 - 127 - 126 - 126 - 125 - 124 - 123 -													ZAV	@ Gs 2.	70				
	130 - 129 - 128 - 128 - 127 - 126 - 126 - 126 - 126 - 126 - 126 - 127 - 128 - 126 - 12													ZAV	@ Gs 2.	70				
	130 - 129 - 128 - 128 - 128 - 127 - 126 - 127 - 125 - 124 - 123 - 122 - 121 - 123 - 122 - 123 - 123 - 123 - 125 - 12													ZAV	@ Gs 2.	70				
	130 - 129 - 128 - 128 - 127 - 126 - 126 - 126 - 126 - 127 - 126 - 127 - 128 - 128 - 128 - 127 - 128 - 126 - 127 - 128 - 126 - 127 - 128 - 127 - 128 - 126 - 127 - 128 - 127 - 128 - 128 - 128 - 127 - 128 - 128 - 128 - 128 - 127 - 128 - 128 - 128 - 127 - 128 - 12			2 3				7	8	9 10					@ Gs 2.			2	23 24	
	130 - 129 - 128 - 128 - 128 - 127 - 126 - 127 - 125 - 124 - 123 - 122 - 121 - 123 - 122 - 123 - 123 - 123 - 125 - 12						6		8											
	130 - 129 - 128 - 127 - 127 - 126 - 127 - 127 - 127 - 126 - 127 - 127 - 127 - 127 - 128 - 127 - 127 - 128 - 127 - 127 - 127 - 127 - 127 - 128 - 127 - 127 - 128 - 127 - 128 - 127 - 128 - 128 - 128 - 127 - 128 - 129 - 120 - 12	sted		2 3			6		8						17 18	19	20 21 22 PLATI A. Cabani	EN		

		PAVINO	G DESIGN
	IC: CLIENT	<u>2445-04</u> <u>New Urban</u>	CONSULT: <u>YMH</u> West-Metro Walk
	CALCULAT	TION SHEET #	1
CALTRANS METHOD FOR DESIG	GN OF F	LEXIBLE	PAVEMENT
Input "R" value or "CBR" of native soil		7	
Type of Index Property - "R" value or "CBR" (C	C or R)	R	R Value
R Value used for Caltrans Method Input Traffic Index (TI)		7 5	
Calculated Total Gravel Equivalent (GE)		1.488	feet
Calculated Total Gravel Equivalent (GE)		17.856	inches
Calculated Gravel Factor (Gf) for A/C paving Gravel Factor for Base Course (Gf)		2.53 1.2	
			s Class II Base

TRIAL EQUIVALENT PAVEMENT SECTIONS:

A/C	SECTION	BASE SECTION			
Section	Gravel	Equivalent		Minimum	
Thickness	GE	GE	Delta	Base	
(inches)	(feet)	(inches)	(inches)	(inches)	
3	0.63	7.60	10.25	8.54	
4	0.84	10.14	7.72	6.43	
5	1.06	12.67	5.18	4.32	
6	1.27	15.21	2.65	2.21	
7	1.48	17.74	0.11	0.09	
8	1.69	20.28	-2.42		
9	1.90	22.81	-4.96		
10	2.11	25.35	-7.49		
11	2.32	27.88	-10.03		
12	2.53	30.42	-12.56		


		PAVING	G DESIGN
	IC: CLIENT	<u>2445-04</u> New Urban	CONSULT: <u>YMH</u> West-Metro Walk
	CALCULAT	TION SHEET #	1
CALTRANS METHOD FOR DESIG	GN OF F	LEXIBLE	PAVEMENT
Input "R" value or "CBR" of native soil		7	
Type of Index Property - "R" value or "CBR" (C	or R)	R	R Value
R Value used for Caltrans Method Input Traffic Index (TI)		7 6.5	
Calculated Total Gravel Equivalent (GE)		1.9344	feet
Calculated Total Gravel Equivalent (GE)		23.2128	inches
Calculated Gravel Factor (Gf) for A/C paving Gravel Factor for Base Course (Gf)		2.22 1.2	
			Class II Base


TRIAL EQUIVALENT PAVEMENT SECTIONS:

A/C	SECTION	BASE SECTION		
Section	Gravel	Equivalent		Minimum
Thickness	GE	GE GE (feet) (inches)		Base
(inches)	(feet)			(inches)
3	0.56	6.67	16.54	13.79
4	0.74	8.89	14.32	11.93
5	0.93	11.12	12.10	10.08
6	1.11	13.34	9.87	8.23
7	1.30	15.56	7.65	6.38
8	1.48	17.79	5.43	4.52
9	1.67	20.01	3.20	2.67
10	1.85	22.23	0.98	0.82
11	2.04	24.45	-1.24	
12	2.22	26.68	-3.46	

APPENDIX 'C'

Conceptual Plans

FLOOD INSURANCE RATE MAPS COMMUNITY PANEL NUMBERS NO. 06037C0840F AND 06037C0845F ZONE X CONTOURS ARE BASED ON AN AERIAL PHOTOGRAMETRIC SURVEY PERFORMED BY VERTEX AND DON READ CORPORATION FLOWN ON

CONDOMINIUM NOTE: ALL RESIDENTIAL, COMMERCIAL AND OFFICE LOTS WITHIN THIS TENTATIVE MAP MAY BE FURTHER AIRSPACE SUBDIVIDED FOR CONDOMINIUM PURPOSES.

LOT 5 OPEN SPACE

41.082 SF

APN: 2840-004-010 NOT A PART

20.42 AC 503 RP UR5

L 1668 DATUM NAVD 88(1995 ADJUSTMENT) ELEVATION 1586.011 SAND CANYON ROAD AND 161M NORTH OF LIVE OAK SPRINGS CANYON ROAD 8.2M NORTHEAST OF POWER POLE #1155006E MKD (PI 24)

DESCRIPTION: CS MON IN WELL 250MM DN @ PI 600MM EAST OF CENTERLINE THE BEARINGS SHOWN HEREON ARE BASED ON THE BEARING NORTH 89°44'29" WEST

OF THE SOUTH LINE OF THE SOUTHEAST QUARTER OF SECTION 22, TOWNSHIP 4 NORTH, RANGE 15 WEST, SAN BERNARDINO MERIDIAN, AS SHOWN ON MAP OF TRACT NO. 69164–01 FILED IN BOOK 1396 PAGES 40 THROUGH 48 INCLUSIVE, OF MAPS, IN THE OFFICE OF THE COUNTY RECORDER OF LOS ANGELES COUNTY.

GRAPHIC SCALE (IN FEET) 1 inch = 60 ft.

ABBREVIATIONS:

ACRES AC AMERICAN PUBLIC WORKS ASSOCIATION APWA BVC BEGINING VERTICAL CURB

- EVC END VERTICAL CURB
- ΕX EXISTING FINISH FLOOR
- FF FΜ FORCE MAIN FINISHED SURFACE FS
- FIRE WATER
- FW GRADE BREAK GB
- HIGH POINT LENGTH
- MIN MINIMUM
- P.C.C. PORTLAND CEMENT CONCRETE POINT OF INTERSECTION
- ΡI PROP PROPOSED
- RADIUS RIGHT OF WAY R/W
- SQUARE FOOT SF STORM DRAIN
- SD SS SANITARY SEWER
- STD STANDARD
- TO BE IMPACTED TBR TO BE REMOVED
- TO REMAIN WATER

PUBLIC UTILITIES:

CABLE TV	CHARTER COMMUNICATIONS 14221 COVELLO STREET VAN NUYS, CA 91405 (661) 483–3030 ATTN: ROBERT REIHS
LECTRIC	SOUTHERN CALIFORNIA EDISION CO. 3589 FOOTHILL DRIVE THOUSAND OAKS, CA 91361 (661) 607–0512 ATTN: JOSHUA YANEZ
SAS	SOUTHERN CA. GAS COMPANY 9400 OAKDALE AVENUE CHATSWORTH, CA. 91313 (818) 701–7567 ATTN: JOHN CURRAN
SEWER	LOS ANGELES COUNTY SEWER MAINTENANCE DEPARTMENT 45712 NORTH DIVISION LANCASTER, CA. 93535 (626) 300–3370 ATTN: MARISA MORALES
ELEPHONE	AT&T 26971 N. FURNIVALL AVENUE SANTA CLARITA, CA 91351 (661) 251–8799 ATTN: BRYAN MONTGOMERY
VATER	SANTA CLARITA VALLEY WATER AGENCY 26521 SUMMIT CIRCLE SANTA CLARITA, CA 91350 (661) 259–2737 ATTN: BRENT PAYNE

EASEMENT LEGEND:

- A) PROPOSED COVERED STORM DRAIN EASEMENT TO THE CITY OF SANTA CLARITA PROPOSED LANDSCAPE EASEMENT TO THE CITY OF SANTA CLARITA
- PROPOSED ROAD EASEMENT TO THE CITY OF SANTA CLARITA LOST CANYON ROAD
- PROPOSED STORM DRAIN EGRESS EASEMENT TO THE CITY OF SANTA CLAIRTA
- PROPOSED NEW LOT LINE ADJUSTMENT WITH THE CITY OF SANTA CLARITA
- PROPOSED ROAD EASEMENT HARRIMAN DRIVE

EASEMENTS

EASEMENTS BASED ON CHICAGO TITLE COMPANY PRO FORMA REPORT POLICY NO .: Pro Forma-CA-FBSC-IMP-72306-1-19-00098917. A. Property taxes, including any personal property taxes and any assessments collected with taxes, are as follows: Tax Identification No.: 2840-004-009

- Fiscal Year: 2019-2020 1st Installment: \$68,430.01 Unpaid
- Penalty: \$6,843.00 (Due after December 10) 2nd Installment: \$68,430.00 Unpaid
- Penalty and Cost: \$6,853.00 (Due after April 10) Code Area: 15862

B. This exception has been intentionally deleted C. The lien of supplemental or escaped assessments of property taxes, if any, made pursuant to the provisions of Chapter 3.5 (commencing with Section 75) or Part 2, Chapter 3, Articles 3 and 4, respectively, of the Revenue and Taxation Code of the State of California as a result of the transfer of title to the vestee named in Schedule A or as a result of changes in ownership or new construction occurring prior to Date of Policy.

1. Water rights, claims or title to water, whether or not disclosed by the public records. 2. An easement affecting the portion of said land and for the purposes stated herein and incidental purposes (No representation is made as to the present ownership of said easement) In Favor of: Southern California Edison Company, Ltd

For: public utilities Recorded: in Book 20996, Page 385, of Official Records Affects: A portion of said land more particularly described therein SHOWN HEREON AS (2)

3. This exception has been intentionally deleted

4. A document subject to all the terms, provisions and conditions therein contained. Entitled: Resolution No. 91-127 - A Resolution of the City Council of the City of Santa Clarita Confirming the Bouquet Canyon and Route 126 Bridge and Major Thoroughfare Construction Fee Districts Fee Revisions and Providing for Their Adoption as an Urgency Measure Recorded: October 8, 1991 as Instrument No. 91-1581844, of Official Records 5. A document subject to all the terms, provisions and conditions therein contained. Entitled: Resolution No. 91–106 – A Resolution of the City Council of the City of Santa Clarita Confirming the Bouquet Canyon and Route 126 Bridge and Major Thoroughfare Construction Fee Districts Fee Revisions Recorded: October 8, 1991 as Instrument No. 91-1581845, of Official Records

6. Easement(s) for the purpose(s) shown below and rights incidental thereto as condemned by an instrument, Entitled: Amended Final Order of Condemnation Court: Superior Court Case No.: BC 317474

In favor of: Castaic Lake Water Agency, a California water agency Purpose: water pipeline

Recording Date: May 5, 2006 Recording No: 06-0997584, Official Records Affects: that portion of said land described therein

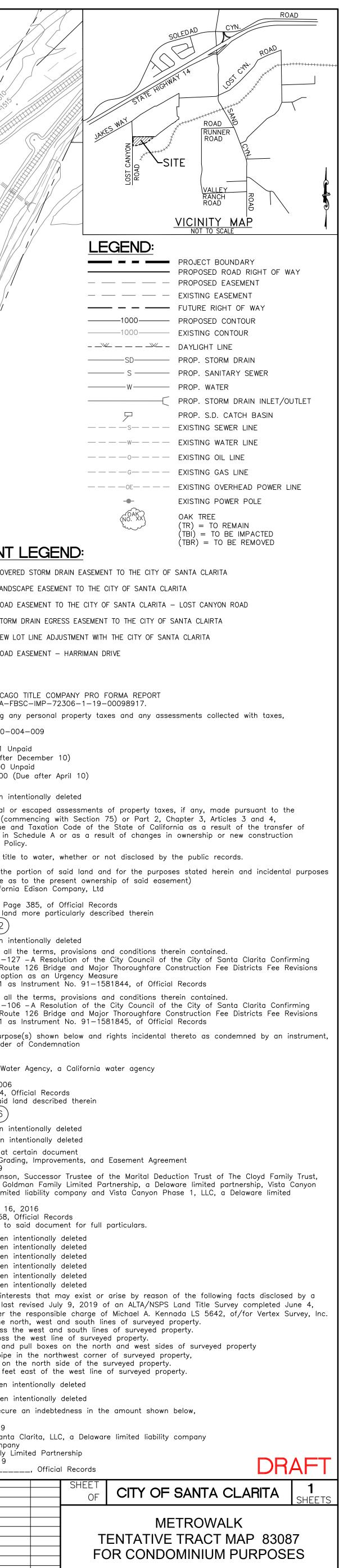
SHOWN HEREON AS(6) 7. This exception has been intentionally deleted

8. This exception has been intentionally deleted

9. Matters contained in that certain document Entitled: Memorandum of Grading, Improvements, and Easement Agreement Dated: November 13, 2009 Executed by: Rachel Jorgenson, Successor Trustee of the Marital Deduction Trust of The Cloyd Family Trust, dated November 3, 2003, Goldman Family Limited Partnership, a Delaware limited partnership, Vista Canyon Ranch, LLC, a California limited liability company and Vista Canyon Phase 1, LLC, a Delaware limited

Ranch, Ll	LC, a Cali	tornia	limite	ed hability	company	and	
liability co	ompany						
Recording) Date: No	vemb	er 16,	2016			
Recording	No: 201	61433	3058,	Official Re	cords		
Reference	is hereb	y maa	de to	said docu	ment for	full p	
10 11							
IU. Ihis	exception	nas	been i	ntentionali	y deleted		
11. This	exception	has	been i	ntentionall	y deleted		
12. This	exception	has	been i	ntentionall	v deleted		

10	TI •				• • • •	
10.	Inis	exception	nas	been	intentionally	deleted
11.	This	exception	has	been	intentionally	deleted
12.	This	exception	has	been	intentionally	deleted
13.	This	exception	has	been	intentionally	deleted
14. [·]	This	exception	has	been	intentionally	deleted
15.	This	exception	has	been	intentionally	deleted
16. <i>A</i>	٩ny	rights, clai	ms o	or inte	erests that n	nay exist or ari
map	date	ed June 5	, 20 ⁻	19 las	t revised Jul	y 9, 2019 of a
2019) pre	pared by	oru	nder t	the responsit	le charge of M


2019 prepared by or under the responsible charge of Michael A. Kennada LS 5642, of/for Vertex Survey, Inc. A. Curbs extend across the north, west and south lines of surveyed property. B. There is vehicular access the west and south lines of surveyed property. C. A V-ditch extends across the west line of surveyed property. D. There are street lights and pull boxes on the north and west sides of surveyed property E. There is a 36" stand pipe in the northwest corner of surveyed property, F. There are water valves on the north side of the surveyed property. G. A fire hydrant lies 1.3 feet east of the west line of surveyed property.

17. This exception has been intentionally deleted 18. This exception has been intentionally deleted

19. A deed of trust to secure an indebtedness in the amount shown below, Amount: \$4,500,000.00 Dated: November __, 2019 Trustor/Grantor Blumax Santa Clarita, LLC, a Delaware limited liability company

Trustee: Chicago Title Company Beneficiary: Goldman Family Limited Partnership Recording Date: ___, 2019 Recording No: 2019 - ____, Official Records

	, ernera				
SHEET					
OF V					
TEN					
FOR					
]	APPR	BY	REVISIONS	DATE	NO.

APPENDIX 'D'

Grading Specifications

STANDARD GRADING SPECIFICATIONS

These specifications present the usual and minimum requirements for grading operations performed under our supervision.

GENERAL

1) The Geotechnical Engineer and Engineering Geologist are the developer's representative on the project.

2) All clearing, site preparation or earth work performed on the project shall be conducted by the contractor under the supervision of the Geotechnical Engineer.

3) It is the contractor's responsibility to prepare the ground surface to receive the fills to the satisfaction of the Geotechnical Engineer and to place, spread, mix, water, and compact the fill in accordance with the specifications of the Geotechnical Engineer. The contractor shall also remove all material considered unsatisfactory by the Geotechnical Engineer.

4) It is the contractor's responsibility to have suitable and sufficient compaction equipment on the job site to handle the amount of fill being placed. If necessary, excavation equipment will be shut down to permit completion of compaction. Sufficient watering apparatus will also be provided by the contractor, with due consideration for the fill material, rate of placement and time of year.

5) A final report shall be issued by our firm outlining the contractor's conformance with these specifications.

SITE PREPARATION

1) All vegetation and deleterious materials such as rubbish shall be disposed of off-site. Soil, alluvium or rock materials determined by the Geotechnical Engineer as being unsuitable for placement in compacted fills shall be removed and wasted from the site. Any material incorporated as a part of a compacted fill must be approved by the Geotechnical Engineer.

2) The Engineer shall locate all houses, sheds, sewage disposal systems, large trees or structures on the site or on the grading plan to the best of his knowledge prior to preparing the ground surface.

Any underground structures such as cesspools, cisterns, mining shafts, tunnels, septic tanks, wells, pipe lines, or others not located prior to grading are to be removed or treated in a manner prescribed by the Geotechnical Engineer.

3) After the ground surface to receive fill has been cleared, it shall be scarified, disced or bladed by the contractor until it is uniform and free from ruts, hollows, hummocks or other uneven features which may prevent uniform compaction.

The scarified ground surface shall then be brought to optimum moisture, mixed as required, and compacted as specified. If the scarified zone is greater than twelve inches (12") in depth, the excess shall be removed and placed in lifts restricted to six inches (6").

Prior to placing fill, the ground surface to receive fill shall be inspected, tested and approved by the Geotechnical Engineer.

PLACING, SPREADING AND COMPACTION OF FILL MATERIALS

The selected fill material shall be placed in layers which when compacted shall not exceed six inches
 (6") in thickness. Each layer shall be spread evenly and shall be thoroughly mixed during the spreading to insure uniformity of material and moisture of each layer.

2) Where the moisture content of the fill material is below the limits specified by the Geotechnical Engineer, water shall be added until the moisture content is as required to assure thorough bonding and thorough compaction.

3) Where the moisture content of the fill material is above the limits specified by the Geotechnical Engineer, the fill materials shall be aerated by blading or other satisfactory methods until the moisture content is adequate.

COMPACTED FILLS

1) Any material imported or excavated on the property may be utilized in the fill, provided each material has been determined to be suitable by the Geotechnical Engineer. Roots, tree branches or other matter missed during clearing shall be removed from the fill as directed by the Geotechnical Engineer.

2) Rock fragments less than six inches (6") in diameter may be utilized in the fill, provided:

- a) They are not placed in concentrated pockets.
- b) There is a sufficient percentage of fine-grained material to surround the rocks.
- c) The distribution of the rocks is supervised by the Geotechnical Engineer.

3) Rocks greater than six inches (6") in diameter shall be taken off-site, or placed in accordance with the recommendations of the Geotechnical Engineer in areas designated as suitable for rock disposal. Details for rock disposal such as location, moisture control, percentage of rock placed, will be referred to in the "Conclusions and Recommendations" section of the geotechnical report.

If the rocks greater than six inches (6") in diameter were not anticipated in the preliminary geotechnical and geology report, rock disposal recommendations may not have been made in the "Conclusions and Recommendations" section. In this case, the contractor shall notify the Geotechnical Engineer if rocks greater than six inches (6') in diameter are encountered. The Geotechnical Engineer will than prepare a rock disposal recommendation or request that such rocks be taken off-site.

4) Representative samples of materials to be utilized as compacted fill shall be analyzed in the laboratory by the Geotechnical Engineer to determine their physical properties. If any materials other than that previously tested is encountered during grading, the appropriate analysis of this material shall be conducted by the Geotechnical Engineer as soon as possible.

Material that is spongy, subject to decay or otherwise considered unsuitable shall not be used in the compacted fill.

5) Each layer shall be compacted to a minimum of ninety percent (90%) of the maximum density in compliance with the testing method specified by the controlling governmental agency (ASTM D-1557).

If compaction to a lesser percentage is authorized by the controlling governmental agency because of a specific land use or expansive soil conditions, the area to receive fill compacted to less than ninety percent (90%) shall either be delineated on the grading plan or appropriate reference made to the area in the geotechnical report.

6) Compaction shall be by sheeps foot roller, multi-wheeled pneumatic tire roller, or other types of acceptable rollers. Rollers shall be of such design that they will be able to compact the fill to the specified density. Rolling shall be accomplished while the fill material is at the specified moisture content. The final surface of the lot areas to receive slabs-on-grade should be rolled to a smooth, firm surface.

7) Field density tests shall be made by the Geotechnical Engineer of the compaction of each layer of fill. Density tests shall be made at intervals not to exceed two feet (2') of fill height provided all layers are tested. Where the sheeps foot rollers are used, the soil may be disturbed to a depth of several inches and density readings shall be taken in the compacted material below the disturbed surface. When these readings indicate the density of any layer of fill or portion thereof is below the required ninety percent (90%) density, the particular layer or portion shall be reworked until the required density has been obtained.

8) Buildings shall not span from cut to fill. Cut areas shall be over excavated and compacted to provide a fill mat of three feet (3').

FILL SLOPES

1) All fills shall be keyed and benched through all top soil, colluvium, alluvium, or creep material into sound bedrock or firm material where the slope receiving fill exceeds a ratio of five (5) horizontal to one (1) vertical, in accordance with the recommendations of the Geotechnical Engineer.

2) The key for side hill fills shall be a minimum of fifteen feet (15') within bedrock or firm materials, unless otherwise specified in the geotechnical report.

3) Drainage terraces and subdrainage devices shall be constructed in compliance with the ordinances of the controlling governmental agency, or with the recommendations of the Geotechnical Engineer.

4) The Contractor will be required to obtain a minimum relative compaction of ninety percent (90%) out to the finish slope face of fill slopes, buttresses, and stabilization fills. This may be achieved by either over-building

the slope and cutting back to the compacted core, or by direct compaction of the slope face with suitable equipment, or by any other procedure which produces the required compaction.

5) All fill slopes should be planted or protected from erosion by methods specified in the geotechnical report and by the governing agency.

6) Fill-over-cut slopes shall be properly keyed through topsoil, colluvium, or creep material into rock or firm materials. The transition zone shall be stripped of all soil prior to placing fill.

CUT SLOPES

1) The Engineering Geologist shall inspect all cut slopes excavated in rock, lithified, or formation material at vertical intervals not exceeding ten feet (10').

2) If any conditions not anticipated in the preliminary report such as perched water, seepage, lenticular or confined strata of a potentially adverse nature, unfavorably inclined bedding, joints, or fault planes, are encountered during grading, these conditions shall be analyzed by the Engineering Geologist and Geotechnical Engineer; and recommendations shall be made to treat these problems.

3) Cut slope that face in the same direction as the prevailing drainage shall be protected from slope wash by a non-erosive interceptor swale placed at the top of the slope.

4) Unless otherwise specified in the geological and geotechnical report, no cut slopes shall be excavated higher or steeper than that allowed by the ordinances of the controlling governmental agencies.

5) Drainage terraces shall be constructed in compliance with the ordinances of controlling governmental agencies, or with the recommendations of the Geotechnical Engineer or Engineering Geologist.

GRADING CONTROL

1) Inspection of the fill placement shall be provided by the Geotechnical Engineer during the progress of grading.

2) In general, density tests should be made at intervals not exceeding two feet (2') of fill height or every five hundred (500) cubic yards of fill placed. These criteria will vary depending on soil conditions and the size of the job. In any event, an adequate number of field density tests shall be made to verify that the required compaction is being achieved.

3) Density tests should also be made on the surface materials to receive fill as required by the Geotechnical Engineer.

4) All clean-out, processed ground to receive fill, key excavations, subdrains, and rock disposal must be inspected and approved by the Geotechnical Engineer prior to placing any fill. It shall be the Contractor's responsibility to notify the Geotechnical Engineer when such areas are ready for inspection.

CONSTRUCTION CONSIDERATIONS

1) Erosion control measures, when necessary, shall be provided by the Contractor during grading and prior to the completion and construction of permanent drainage controls.

2) Upon completion of grading and termination of inspections by the Geotechnical Engineer, no further filling or excavating, including that necessary for footings, foundations, large tree wells, retaining walls, or other features shall be performed without the approval of the Geotechnical Engineer or Engineering Geologist.

3) Care shall be taken by the contractor during final grading to preserve any berms, drainage terraces, interceptor swales, or other devices of a permanent nature on or adjacent to the property.

APPENDIX C

O & M MANUAL for UNDERGROUND INFILTRATION CHAMBER

ADVANCED DRAINAGE SYSTEMS, INC.

1934 - MetroWalk

LA County

STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500 OR APPROVED EQUAL. 1
- CHAMBERS SHALL BE MADE FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS. 2.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORT PANELS THAT 3. WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED 5 WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBERS SHALL BE DESIGNED AND ALLOWABLE LOADS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE 6 FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS"
- 7 ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. THE CHAMBER MANUFACTURER SHALL SUBMIT THE FOLLOWING UPON REQUEST TO THE SITE DESIGN ENGINEER FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE:
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE SAFETY a. FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY AASHTO FOR THERMOPLASTIC PIPE.
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE LOAD h FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP MODULUS DATA SPECIFIED IN ASTM F2418 MUST BE USED AS PART OF THE AASHTO STRUCTURAL EVALUATION TO VERIFY LONG-TERM PERFORMANCE.
 - STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EVALUATION IS BASED. c.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 8

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1. PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2 STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS.

STORMTECH RECOMMENDS 3 BACKFILL METHODS:

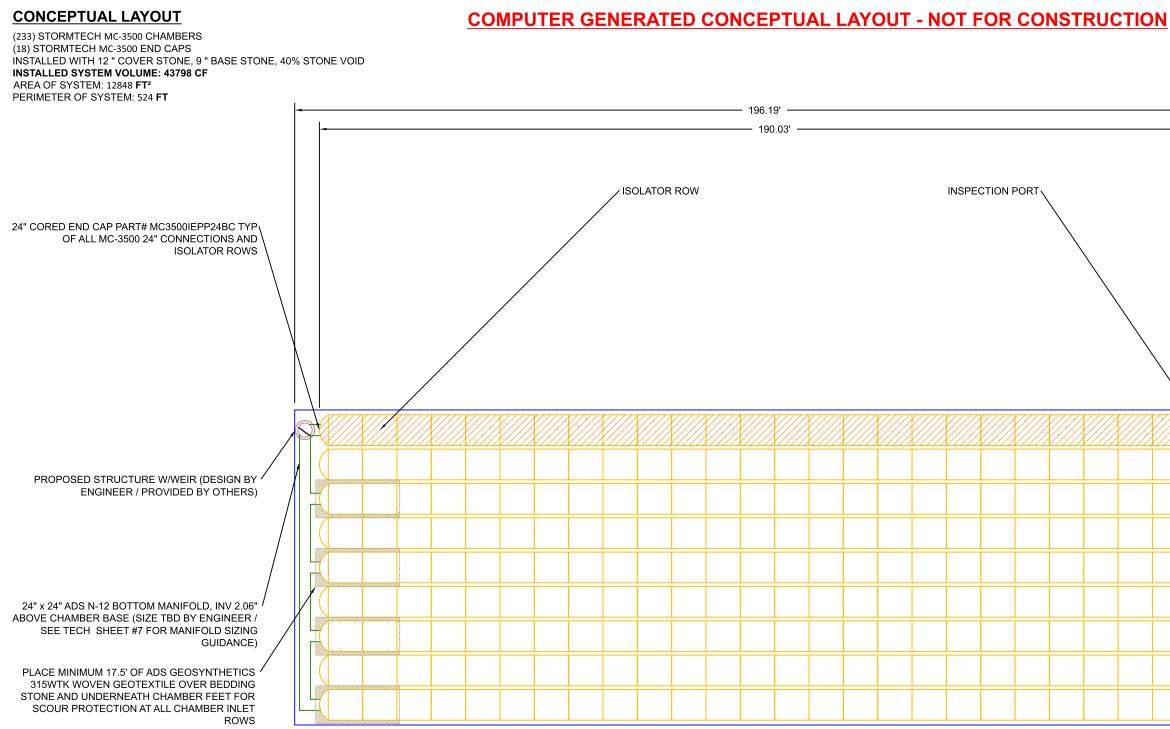
- STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 9" (230 mm) SPACING BETWEEN THE CHAMBER ROWS 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 7.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm) MEETING THE AASHTO M43 8. DESIGNATION OF #3 OR #4.
- STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.. 9.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 10 STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1
- 2 THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE"
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.



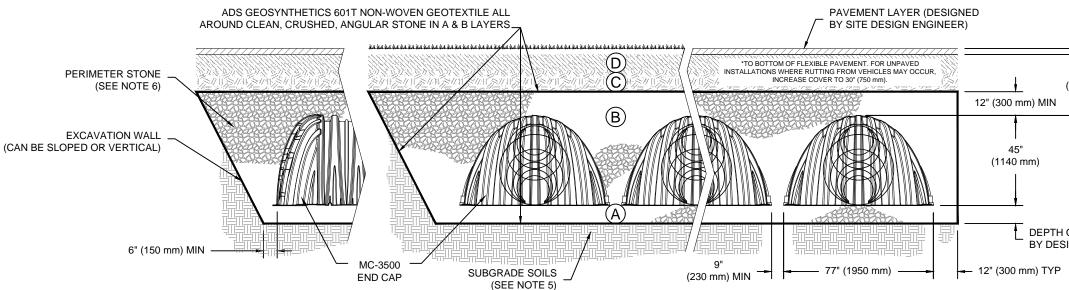
NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE

					<u>v</u>
	63.75'			-	
	Stormlech	REV DRW CI	CHK DESCRIPTION	1934 - M	1934 - MetroWalk LA County
	Detention- Retention- Water Quality			DATE: 05/07/2020 DRAWN:	DRAWN: SL
	70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067 860-529-8188 888-892-2694 WWW.STORMTECH.COM			PROJECT #: Tool	CHECKED:
THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL	VEER OR OTHER PROJECT RI ALL APPLICABLE LAWS, REGU	EPRESENTATIVE. THE SITE DESIGN ENGINEER S LATIONS, AND PROJECT REQUIREMENTS.	HALL REVIEW THIS DRAWING PRIOR TO CO	DISTRUCTION. IT IS THE ULTIMAT

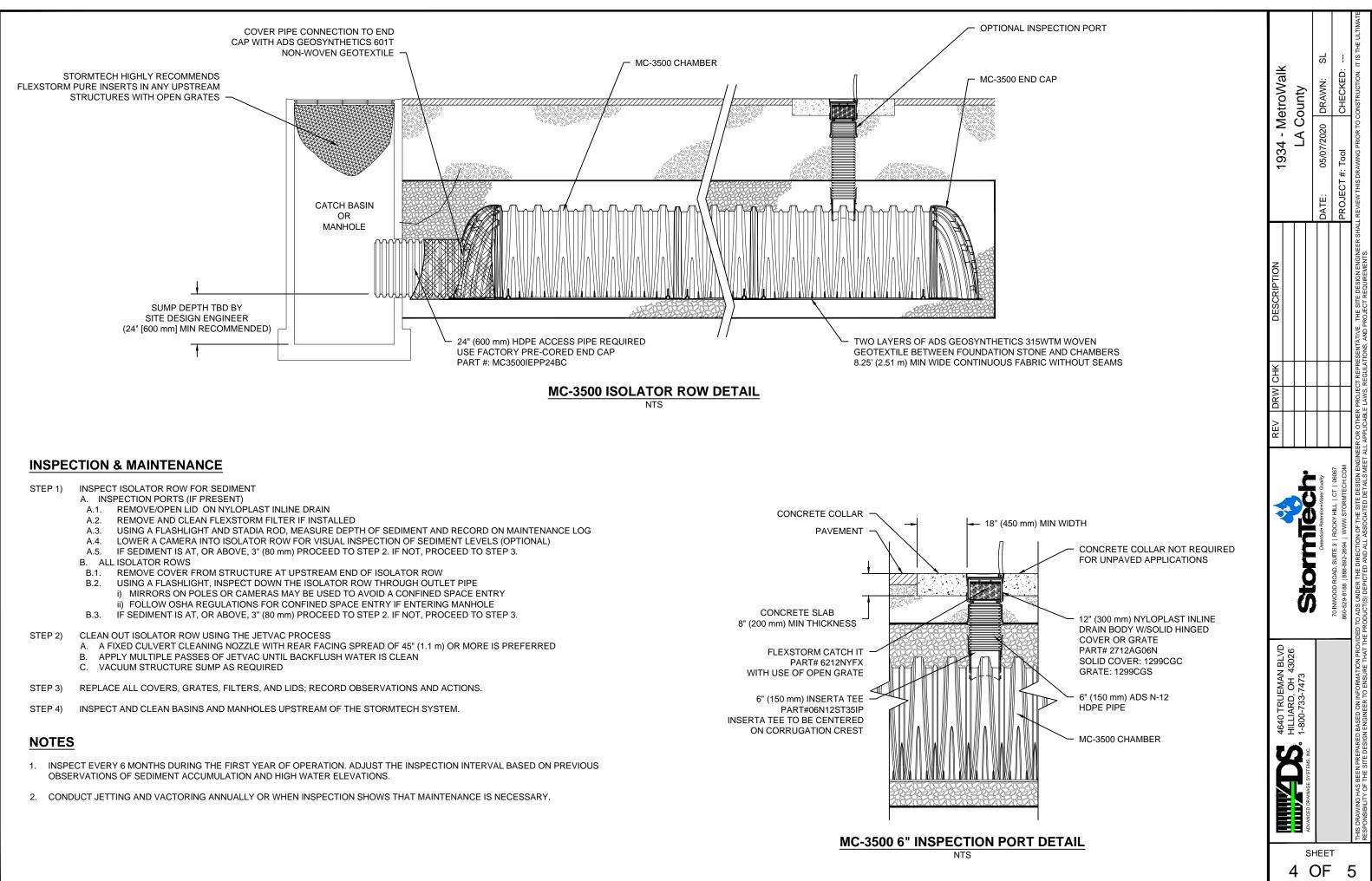
ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

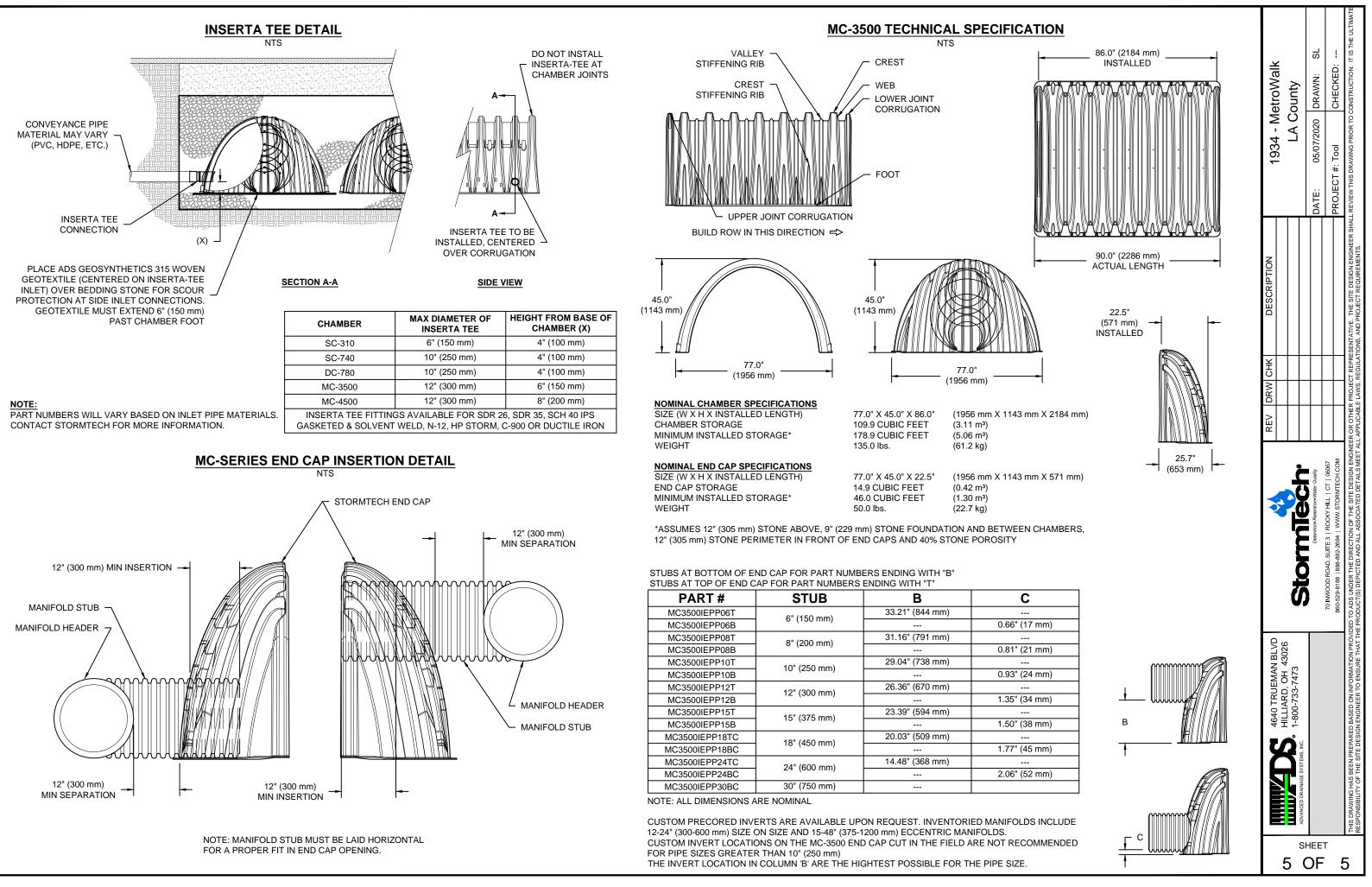

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / D REQUIREME
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN EN PAVED INSTALLATIONS MAY H MATERIAL AND PREPARATION I
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	OR	BEGIN COMPACTIONS AFTER MATERIAL OVER THE CHAMBE COMPACT ADDITIONAL LAYERS MAX LIFTS TO A MIN. 95% PROCT WELL GRADED MATERIAL AND DENSITY FOR PROCESSED MATERIALS.
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 4	NO COMPACTION REC
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 4	PLATE COMPACT OR ROLL TO SURFACE. ^{2 3}

PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY C


3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT CO EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.



NOTES:

- 1. MC-3500 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. "ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL MATERIALS.
- 4. THE "SITE DESIGN ENGINEER" REFERS TO THE ENGINEER RESPONSIBLE FOR THE DESIGN AND LAYOUT OF THE STORMTECH CHAMBERS FOR THIS PROJECT.
- 5. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 6. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 7. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

DENSITY ENT NGINEER'S PLANS. HAVE STRINGENT I REQUIREMENTS. R 24" (600 mm) OF ERS IS REACHED. RS IN 12" (300 mm) CTOR DENSITY FOR ID 95% RELATIVE D AGGREGATE	A640 TRUEMAN BLVD 4640 TRUEMAN BLVD 1934 - MetroWalk ILLIARD, OH 43026 1-800-733-7473 1-800-733-7473 Anvede nammed systems, inc. 1-800-733-7473 1-800-733-7473 Inc. 1-800-733-7473 1-800-733-7473 Anvede nammed systems, inc. 1-800-733-7473 1-800-733-7473 Inc. Inc. 1-800-733-7473 Anvede nammed systems, inc. 1-800-733-7473 1-800-733-7473 Inc. Inc. 1-800-733-7473 Anvede nammed systems, inc. 1-800-733-7473 1-800-7730-7020 Inc. Inc. 05/07/2020 Inc. Inc. 05/07/2020 Inc. Inc. Inc. Inc. 0-72020 Inc. Inc. Inc. Inc. Inc. 05/07/2020 Inc. Inc. Inc. Inc. Inc. Inc. 05/07/2020 Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc. <t< th=""></t<>
QUIRED.	DESCRIPTION THE SITE DESIGN ENGINEER SH ROLECT REQUIREMENTS.
N, CRUSHED, COMPACTOR. COMPACTION	REV DRW CHK
OF STONE TO BE DETERMINED IGN ENGINEER 9" (230 mm) MIN	Storman March Action Research Action Research Action Research Resource Re
	A640 TRUEMAN BLVD 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 40/MICE BRAINGE SYSTEMS, INC. 1-800-733-7473 1-800-733-7473 1-800-733-7473
	SHEET 3 OF 5

Isolator[®] Row 0&M Manual

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS[™]

THE ISOLATOR® ROW

INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

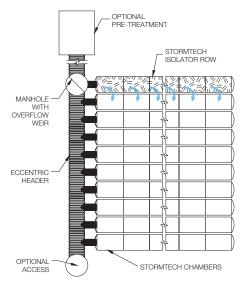
THE ISOLATOR ROW

The Isolator Row is a row of StormTech chambers, either SC-160LP, SC-310, SC-310-3, SC-740, DC-780, MC-3500 or MC-4500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls (SC-310, SC- 310-3 and SC-740 models) allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber. The non-woven fabric is not required over the SC-160LP, DC-780, MC-3500 or MC-4500 models as these chambers do not have perforated side walls.

The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.

The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.


Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

StormTech Isolator Row with Overflow Spillway (not to scale)

ISOLATOR ROW INSPECTION/MAINTENANCE

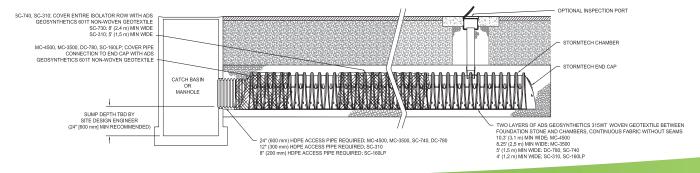
INSPECTION

The frequency of inspection and maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial, residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.


MAINTENANCE

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

Note: Non-woven fabric is only required over the inlet pipe connection into the end cap for SC-160LP, DC-780, MC-3500 and MC-4500 chamber models and is not required over the entire Isolator Row.

ISOLATOR ROW STEP BY STEP MAINTENANCE PROCEDURES

STEP 1

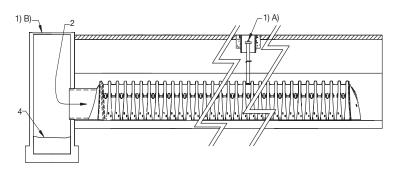
Inspect Isolator Row for sediment.

A) Inspection ports (if present)

- i. Remove lid from floor box frame
- ii. Remove cap from inspection riser
- iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
- iv. If sediment is at or above 3 inch depth, proceed to Step 2. If not, proceed to Step 3.
- **B) All Isolator Rows**
 - i. Remove cover from manhole at upstream end of Isolator Row
 - ii. Using a flashlight, inspect down Isolator Row through outlet pipe
 - 1. Mirrors on poles or cameras may be used to avoid a confined space entry
 - 2. Follow OSHA regulations for confined space entry if entering manhole
 - iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches), proceed to Step 2. If not, proceed to Step 3.

STEP 2

Clean out Isolator Row using the JetVac process.


- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required

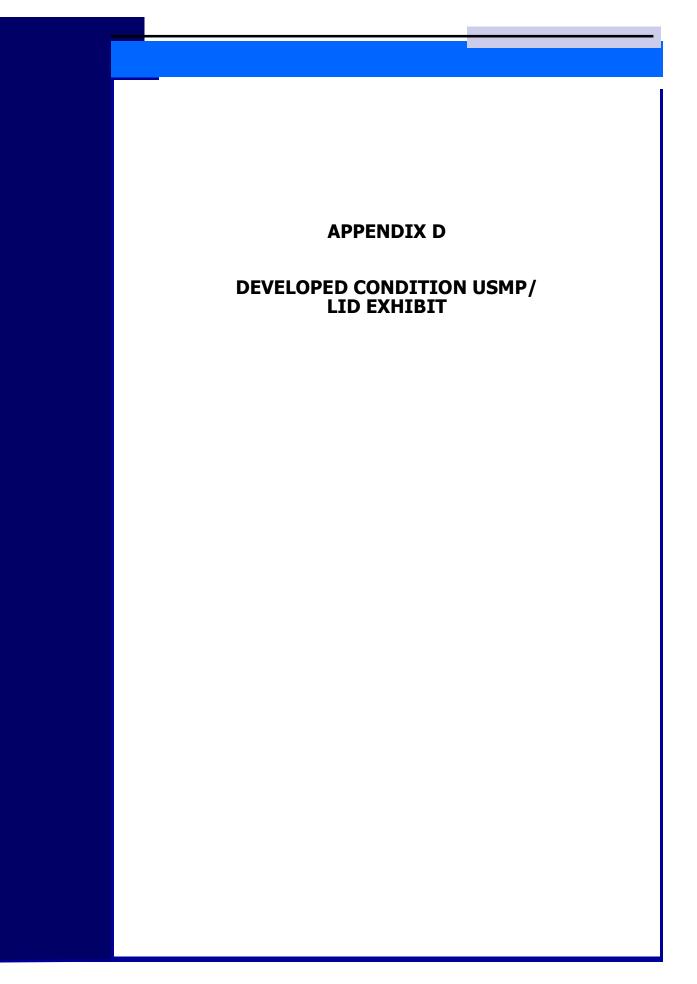
STEP 3

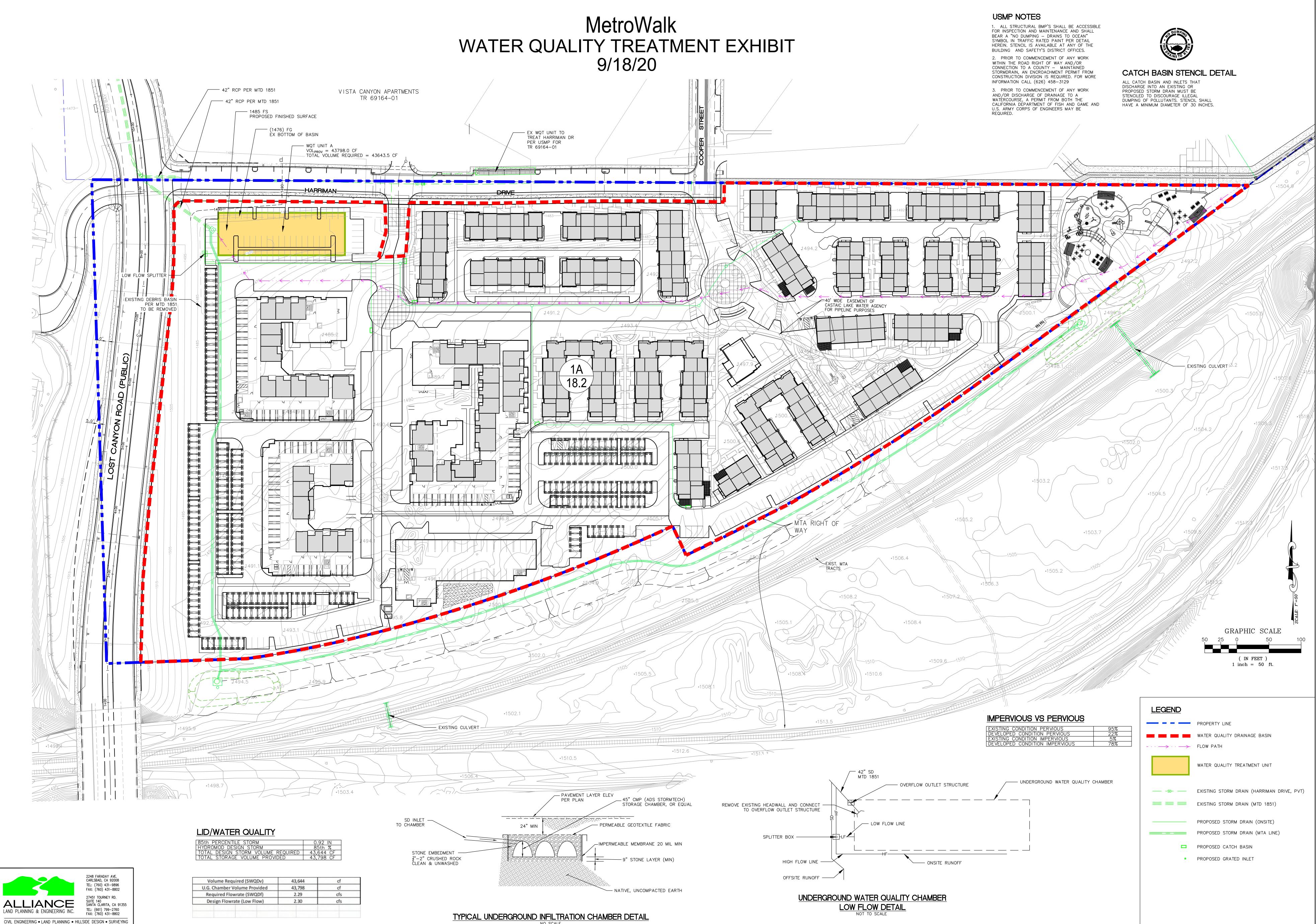
Replace all caps, lids and covers, record observations and actions.

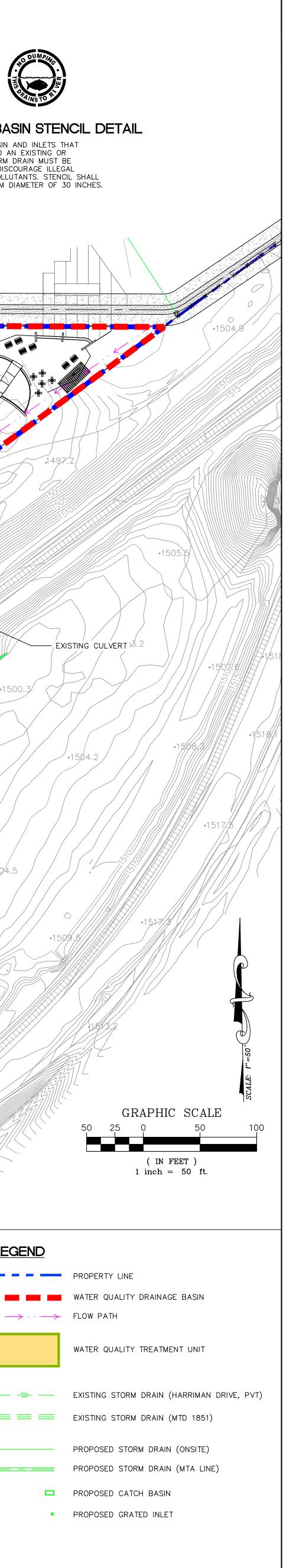
STEP 4

Inspect & clean catch basins and manholes upstream of the StormTech system.

SAMPLE MAINTENANCE LOG


	Stadia Rod Readings		Sediment Depth		
Date	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)	(1)–(2)	Observations/Actions	Inspector
3/15/11	6.3 ft	none		New installation. Fixed point is CI frame at grade	DJM
9/24/11		6.2	0,1 ft	some grit felt	SM
6/20/13		5.8	0.5 ft	Mucky feel, debris visible in manhole and in Isolator Row, maintenance due	NV
7/7/13	6.3 ft		0	System jetted and vacuumed	DJM


ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. Stormtech[®] and the Isolator[®] Row are registered trademarks of StormTech, Inc. © 2017 Advanced Drainage Systems, Inc. #11011 03/17 CS


Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com

I: \CAD\1934\HYDROLOGY\1934-WQT-HYDRO.dwg

