APPENDIX J NOISE STUDY

Blackhall Studios-Santa Clarita Project

Noise and Vibration Study

prepared for

LA Railroad 93, LLC 1415 Constitution Road SE Atlanta, Georgia 30316 Contact: Jeff Weber

prepared by

Rincon Consultants, Inc. 250 East 1st Street, Suite 1400 Los Angeles, California 90012

July 2022

Table of Contents

1	Projec	t Description and Impact Summary1
	1.1	Introduction1
	1.2	Project Summary1
2	Backgr	round5
	2.1	Overview of Sound Measurement5
	2.2	Vibration6
	2.3	Sensitive Receivers7
	2.4	Project Noise Setting7
	2.5	Regulatory Framework9
3	Metho	dology
	3.1	Construction Noise
	3.2	Groundborne Vibration14
	3.3	Operational Noise Sources14
	3.4	Mobile Source Noise
	3.5	Significance Thresholds19
4	Impact	t Analysis 20
5	Conclu	isions
6	Refere	nces

Tables

Summary of Impacts	1
Project Vicinity Sound Level Monitoring Results	9
Noise Level Limits	11
Corrections to Noise Limits	12
Vibration Levels Measured during Construction Activities	14
HVAC Noise Levels	15
Modeled Traffic Speeds and Volumes	16
Operational Noise	22
Offsite Traffic Noise Increases, dBA L _{dn} at 50 Feet – Existing Scenarios	23
Offsite Traffic Noise Increases, dBA L _{dn} at 50 Feet – Future Scenarios	24
	Summary of Impacts Project Vicinity Sound Level Monitoring Results Noise Level Limits Corrections to Noise Limits Vibration Levels Measured during Construction Activities HVAC Noise Levels Modeled Traffic Speeds and Volumes Operational Noise Offsite Traffic Noise Increases, dBA L _{dn} at 50 Feet – Existing Scenarios Offsite Traffic Noise Increases, dBA L _{dn} at 50 Feet – Future Scenarios

Figures

Figure 1	Regional Location	2
Figure 2	Project Site Location and Site Plan	3
Figure 3	Noise Measurement Locations	8
Figure 4	City of Santa Clarita Noise and Land Use Compatibility Guidelines	10
Figure 5	Modeled Receivers and Noise Contours	21

LA Railroad 93, LLC Blackhall Studios-Santa Clarita Project

Appendices

Appendix ANoise Measurement DataAppendix BRoadway Construction Noise Model (RCNM) Results

Appendix C Mechanical Equipment Specifications

1 Project Description and Impact Summary

1.1 Introduction

This study analyzes the potential noise and vibration impacts of the proposed Blackhall Studios-Santa Clarita Project (project) in the City of Santa Clarita (City). The purpose of this study is to analyze the project's noise and vibration impacts related to both temporary construction activity and long-term operation of the project. Table 1 provides a summary of project impacts.

Table 1 Summary of Impacts

Impact Statement	Proposed Project's Level of Significance	Applicable Recommendations
Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?	Less than significant impact	None
Would the project result in generation of excessive groundborne vibration or groundborne noise levels?	Less than significant impact	None
For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?	No impact	None

1.2 Project Summary

Project Location

The project site is in the City of Santa Clarita in Los Angeles County, California. The regional location of the project site is shown in Figure 1. The 93.5-acre project site is located east of Railroad Avenue and north of 13th Street. The project location is depicted in Figure 2. Adjacent land uses include residential developments to the north and east, and commercial and light industrial uses to the south and west. Undeveloped land is also adjacent to the northeast of the parcel. Land uses in the greater vicinity include residential, commercial, and light industrial, as well as oilfields located approximately one mile to the east. The Newhall Metrolink right-of-way is located along the property's western boundary, parallel to Railroad Avenue. An existing developed and fenced utility corridor on Metropolitan Water District of Southern California property forms the eastern boundary, which is flanked by residential development along Alderbrook Drive to the east.

Surrounding land uses include residential uses to the north, east, a mobile home park at 24833 Railroad Avenue to the west, and commercial and light industrial uses to the south. The Newhall Metrolink right-of-way (ROW) is located along the site's western boundary parallel to Railroad Avenue. An existing developed and fenced utility corridor on Metropolitan Water District of Southern California property forms the eastern boundary, which is flanked by residential development along Alderbrook Drive to the east and 13th and 12th Streets borders the project site to the south.

Fig 1 Regional Locat

Figure 2 Project Site Location and Site Plan

Project Description

The project involves the construction of a full-service film and television studio campus that is planned for the currently-vacant 93.5-acre parcel of land situated at the northeast corner of Railroad Avenue and 13th Street. A five-level (four elevated) parking structure is also included in the proposed project. The overall site includes approximately 476,000 square feet of sound stages; approximately 571,000 square feet of workshops, warehouses and support uses; approximately 210,000 square feet of production and administrative offices; and approximately 37,500 square feet of catering and other specialty services. The project proposes a bridge across Placerita Creek to access a graded employee parking area on the north side of Placerita Creek. This report also evaluates the adjacent 11.4 acre Metropolitan Water District (MWD) right of way parcel, which may potentially be utilized for excess parking, subject to agreement with MWD. See Figure 2 for the project site design features.

2 Background

2.1 Overview of Sound Measurement

Sound is a vibratory disturbance created by a moving or vibrating source, which is capable of being detected by the hearing organs. Noise is defined as sound that is loud, unpleasant, unexpected, or undesired and may therefore be classified as a more specific group of sounds. The effects of noise on people can include general annoyance, interference with speech communication, sleep disturbance, and, in the extreme, hearing impairment (California Department of Transportation [Caltrans] 2013a).

Noise levels are commonly measured in decibels (dB) using the A-weighted sound pressure level (dBA). The A-weighting scale is an adjustment to the actual sound pressure levels so that they are consistent with the human hearing response, which is most sensitive to frequencies around 4,000 Hertz and less sensitive to frequencies around and below 100 Hertz (Kinsler, et. al. 1999). Decibels are measured on a logarithmic scale that quantifies sound intensity in a manner similar to the Richter scale used to measure earthquake magnitudes. A doubling of the energy of a noise source, such as doubling of traffic volume, would increase the noise level by 3 dBA; reducing the energy in half would result in a 3 dBA decrease (Crocker 2007).

Human perception of noise has no simple correlation with sound energy: the perception of sound is not linear in terms of dBA or in terms of sound energy. Two sources do not "sound twice as loud" as one source. It is widely accepted that the average healthy ear can barely perceive changes of 3 dBA, increase or decrease (i.e., twice the sound energy); that a change of 5 dBA is readily perceptible (eight times the sound energy); and that an increase (or decrease) of 10 dBA sounds twice (half) as loud ([10.5x the sound energy] Crocker 2007).

Sound changes in both level and frequency spectrum as it travels from the source to the receiver. The most obvious change is the decrease in level as the distance from the source increases. The manner in which noise reduces with distance depends on factors such as the type of sources (e.g., point or line, the path the sound will travel, site conditions, and obstructions). Noise levels from a point source typically attenuate, or drop off, at a rate of 6 dBA per doubling of distance (e.g., construction, industrial machinery, ventilation units). Noise from a line source (e.g., roadway, pipeline, railroad) typically attenuates at about 3 dBA per doubling of distance (Caltrans 2013a). The propagation of noise is also affected by the intervening ground, known as ground absorption. A hard site, such as a parking lot or smooth body of water, receives no additional ground attenuation and the changes in noise levels with distance (drop-off rate) result from simply the geometric spreading of the source. An additional ground attenuation value of 1.5 dBA per doubling of distance applies to a soft site (e.g., soft dirt, grass, or scattered bushes and trees) (Caltrans 2013a). Noise levels may also be reduced by intervening structures. The amount of attenuation provided by this "shielding" depends on the size of the object and the frequencies of the noise levels. Natural terrain features such as hills and dense woods, and man-made features such as buildings and walls, can substantially alter noise levels. Generally, any large structure blocking the line of sight will provide at least a 5 dBA reduction in source noise levels at the receiver (Federal Highway Administration [FHWA] 2006). Structures can substantially reduce exposure to noise as well. The FHWA's guidelines indicate that modern building construction generally provides an exterior-to-interior noise level reduction of 20 to 35 dBA with closed windows.

The impact of noise is not a function of loudness alone. The time of day when noise occurs and the duration of the noise are also important factors of project noise impact. Most noise that lasts for more than a few seconds is variable in its intensity. Consequently, a variety of noise descriptors have been developed. One of the most frequently used noise metrics is the equivalent noise level (L_{eq}); it considers both duration and sound power level. L_{eq} is defined as the single steady A-weighted level equivalent to the same amount of energy as that contained in the actual fluctuating levels over time. Typically, L_{eq} is summed over a one-hour period. L_{max} is the highest root mean squared (RMS) sound pressure level within the sampling period, and L_{min} is the lowest RMS sound pressure level within the measuring period (Crocker 2007). Noise that occurs at night tends to be more disturbing than that occurring during the day. Community noise is usually measured using Day-Night Average Level (L_{dn}), which is the 24-hour average noise level with a +10 dBA penalty for noise occurring during nighttime (10:00 p.m. to 7:00 a.m.) hours. Community Noise Equivalent Level (CNEL) is the average sound level over a 24-hour period, with a +5 dBA penalty for evening (7:00 p.m. to 10:00 p.m.) hours and a +10 penalty for nighttime (10:00 p.m. to 7:00 a.m.) hours.

2.2 Vibration

Groundborne vibration of concern in environmental analysis consists of the oscillatory waves that move from a source through the ground to adjacent structures. The number of cycles per second of oscillation makes up the vibration frequency, described in terms of Hz. The frequency of a vibrating object describes how rapidly it oscillates. The normal frequency range of most groundborne vibration that can be felt by the human body starts from a low frequency of less than 1 Hz and goes to a high of about 200 Hz (Crocker 2007).

While people have varying sensitivities to vibrations at different frequencies, in general they are most sensitive to low-frequency vibration. Vibration in buildings, such as from nearby construction activities, may cause windows, items on shelves, and pictures on walls to rattle. Vibration of building components can also take the form of an audible low-frequency rumbling noise, referred to as groundborne noise. Groundborne noise is usually only a problem when the originating vibration spectrum is dominated by frequencies in the upper end of the range (60 to 200 Hz), or when foundations or utilities, such as sewer and water pipes, physically connect the structure and the vibration source (Federal Transit Administration [FTA] 2018). Although groundborne vibration is sometimes noticeable in outdoor environments, it is almost never annoying to people who are outdoors. The primary concern from vibration is that it can be intrusive and annoying to building occupants and vibration-sensitive land uses.

Vibration energy spreads out as it travels through the ground, causing the vibration level to diminish with distance away from the source. High-frequency vibrations diminish much more rapidly than low frequencies, so low frequencies tend to dominate the spectrum at large distances from the source. Discontinuities in the soil strata can also cause diffractions or channeling effects that affect the propagation of vibration over long distances (Caltrans 2020). When a building is affected by vibration, a ground-to-foundation coupling loss will usually reduce the overall vibration level. However, under rare circumstances, the ground-to-foundation coupling may actually amplify the vibration level due to structural resonances of the floors and walls.

Vibration amplitudes are usually expressed in peak particle velocity (PPV) or RMS vibration velocity. The PPV and RMS velocity are normally described in inches per second. PPV is defined as the maximum instantaneous positive or negative peak of a vibration signal. PPV is often used in

monitoring of blasting vibration because it is related to the stresses that are experienced by buildings (Caltrans 2020).

2.3 Sensitive Receivers

Noise exposure goals for various types of land uses reflect the varying noise sensitivities associated with those uses. Sensitive land uses are those in which persons occupying the use are particularly sensitive to the effects of noise. The City of Santa Clarita General Plan Noise Element list of noise sensitive uses includes housing, schools, medical facilities, libraries, social care facilities, and similar facilities (City of Santa Clarita 2011). Surrounding land uses that would be considered sensitive receivers include single family residences of residential development along Alderbrook Drive and Circle J Ranch Road to the east, south of Via Princessa to the north, along Placeritos Boulevard to the southeast, and the mobile home park at 24833 Railroad Avenue to the west. There are two churches in the general vicinity of the project site, Newhall Christian Church approximately 300 feet to the east and Village Church approximately 525 feet to the west, however, these uses would not have direct line of site to the project site due to intervening structures consisting of residential or commercial uses. School uses in the vicinity of the project, Placerita Junior High School, Hart High School, Newhall Elementary School, and The Master's University, are also shielded by intervening commercial and residential uses and are located more than 900 feet from the nearest project site boundary lne.

Vibration sensitive receivers are similar to noise sensitive receivers, such as residences and institutional uses (e.g., schools, libraries, and religious facilities). However, vibration sensitive receivers also include buildings where vibrations may interfere with vibration-sensitive equipment, affected by levels that may be well below those associated with human annoyance (FTA 2018; Caltrans 2020).

2.4 Project Noise Setting

The most common source of noise in the project site vicinity is vehicular traffic from Railroad Avenue, 12th Street, and railroad activity. To characterize ambient noise levels at and near the project site, six 15-minute noise level measurements were conducted on November 18, 2021, using an Extech (Model 407780A) ANSI Type 2 integrating sound level meter. The noise meter was calibrated before and after each measurement. Noise Measurement (NM) 1, NM2, and NM3 were conducted to the north of the project site to capture ambient noise levels at residential uses. NM4 and NM6 were conducted at residential use to the east of the project site to capture ambient noise levels at these residential uses. NM5 was conducted to the west of the project site to capture ambient noise levels at the mobile home park residential uses. Measurements were taken in the afternoon with light winds (five miles per hour or lower), light cloud cover, and temperatures between 75 and 80 degrees Fahrenheit. Primary noise sources occurred from vehicular traffic for each measurement, with some measurements picking up noise from intermittent sources such as airplanes and dogs barking.Table 2 summarizes the results of the noise measurements, and noise measurement locations are shown in Figure 3.

Figure 3 Noise Measurement Locations

Imagery provided by Microsoft Bing and its licensors © 2022.

Measurement	Location	Sample Times	Primary Noise Sources	L _{eq} (dBA)	L _{min} (dBA)	L _{max} (dBA)
NM1	Residential area north of project site	12:51 p.m. – 1:06 p.m.	Railroad Avenue (approximately 450 feet from roadway centerline)	43	36	55
NM2	Residential area north of project site	1:11 p.m. – 1:26 p.m.	Wind, airplanes, birds	41	34	54
NM3	Residential area northeast of project site	1:31 p.m. – 1:46 p.m.	Circle J Ranch Road (275 feet from roadway centerline)	58	56	87
NM4	Residential backyard area east of project site	1:58 p.m. – 2:13 p.m.	12 th Street (475 feet from roadway centerline)	49	41	64
NM5	Mixed uses west of project site	2:22 p.m. – 2:57 p.m.	Railroad Avenue (45 feet from roadway centerline)	70	49	87
NM6	Residential backyard area east of project site	2:58 p.m. – 3:13 p.m.	Railroad Avenue (1,240 feet from roadway centerline), dogs barking, wind	47	39	66

Table 2 Project Vicinity Sound Level Monitoring Results

Detailed sound level measurement data are included in Appendix A.

2.5 Regulatory Framework

City of Santa Clarita General Plan Noise Element

The City of Santa Clarita Noise Element contains goals and policies that are designed to include noise control in the planning process in order to maintain compatible land uses with acceptable environmental noise levels and protect Santa Clarita residents from excessive noise. The Noise Element provides Noise and Land Use Compatibility Guidelines as shown in Figure 4 (City of Santa Clarita 2011).

The Noise Element also establishes the following goals and policies that would apply to the proposed project:

- **Goal N 1:** A healthy and safe noise environment for Santa Clarita Valley residents, employees, and visitors.
- **Objective N 1.1:** Protect the health and safety of the residents of the Santa Clarita Valley by the elimination, mitigation, and prevention of significant existing and future noise levels.
 - Policy N 1.1.1: Use the Noise and Land Use Compatibility Guidelines contained on Exhibit N-8 (reproduced herein as Figure 4), which are consistent with State guidelines, as a policy basis for decisions on land use and development proposals related to noise.

LA Railroad 93, LLC Blackhall Studios-Santa Clarita Project

Policy N 1.1.2:	Continue to implement the adopted Noise Ordinance and other applicable code provisions, consistent with state and federal standards, which establish noise impact thresholds for noise abatement and attenuation, in order to reduce potential health hazards associated with high noise levels.							
Policy N 1.1.3:	Include consideration of potential noise impacts in land use planning and development review decisions.							
Policy N 1.1.4:	Control noise sources adjacent to residential, recreational, and community facilities, and those land uses classified as noise sensitive.							
Goal N 2: Protect	residents and sensitive receptors from traffic-generated noise.							
Objective N 2.1:	Prevent and mitigate adverse effects of noise generated from traffic on arterial streets and highways through implementing noise reduction standards and programs.							
Policy N 2.1.2:	Encourage the use of noise absorbing barriers, where appropriate.							
Policy N 2.1.4:	Reduce significant noise levels related to through-traffic in residential areas by promoting subdivision circulation designs to contain a hierarchy of streets, which efficiently direct traffic to highways.							
Policy N 2.1.7:	Require vehicle owners to properly maintain their equipment to avoid							

generating excessive noise levels.

Land Use Category	Community Noise Exposure CNEL, dB						
		55 (50 U	65 7	70 7	75 8	30
Residential - Low Density Single Family, Duplex, Mobile Homes			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Residential - Multi. Family			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Transient Lodging - Motels, Hotels			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Schools, Libraries, Churches, Hospitals, Nursing Homes			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Auditoriums, Concert Halls, Amphitheaters	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Sports Arena, Outdoor Spectator Sports	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Playgrounds, Neighborhood Parks							
Golf Courses, Riding Stables, Water Recreation, Cemeteries							
Office Buildings, Business Commercial and Professional					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Industrial, Manufacturing, Utilities, Agriculture						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Figure 4 City of Santa Clarita Noise and Land Use Compatibility Guidelines

NORMALLY ACCEPTABLE

Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements

////////

LEGEND

CONDITIONALLY ACCEPTABLE New construction or development should be

undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice.

NORMALLY UNACCEPTABLE New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design. Sound walls, window upgrades, and site design modifications may be needed in order to achieve City standards.

CLEARLY UNACCEPTABLE New construction or development should generally not be undertaken. **Goal N 3:** Protect residential neighborhoods from excessive noise.

- **Objective N 3.1:** Prevent and mitigate significant noise levels in residential neighborhoods.
 - Policy N 3.1.1:Require that developers of new single-family and multi-family residential
neighborhoods in areas where the ambient noise levels exceed 60 CNEL
provide mitigation measures for the new residences to reduce interior noise
levels to 45 CNEL, based on future traffic and railroad noise levels.
 - **Policy N 3.1.2:** Require that developers of new single-family and multi-family residential neighborhoods in areas where the projected noise levels exceed 65 CNEL provide mitigation measures (which may include noise barriers, setbacks, and site design) for new residences to reduce outdoor noise levels to 65 CNEL, based on future traffic conditions. This requirement would apply to rear yard areas for single-family developments, and to private open space and common recreational and open space areas for multi-family developments.
 - **Policy N 3.1.3:** Through enforcement of the applicable Noise Ordinance, protect residential neighborhoods from noise generated by machinery or activities that produce significant discernable noise exceeding recommended levels for residential uses.
 - **Policy N 3.1.4:** Require that those responsible for construction activities develop techniques to mitigate or minimize the noise impacts on residences and adopt standards that regulate noise from construction activities that occur in or near residential neighborhoods.
 - **Policy N 3.1.7:** Ensure that design of parks, recreational facilities, and schools minimize noise impacts to residential neighborhoods.

Santa Clarita Municipal Code

SCMC Section 11.44.040(A-B). Santa Clarita Municipal Code (SCMC) Section 11.44.040(A) sets exterior noise level limits for residential, commercial, and manufacturing land uses, which are summarized in Table 3. SCMC Section 11.44.040(B) provides corrections to the noise level limits for certain noise conditions, which are summarized in Table 4. These corrections may be applied to the increase or decrease the numerical noise level limits shown in Table 3 where applicable noise conditions exist.

Table 3 Noise Level Limits

Region	Time	L _{eq} (dBA)					
Residential	Day ¹	65					
	Night ²	55					
Commercial/Manufacturing	Day ¹	80					
	Night ²	70					
¹ SCMC Section 11.44.020 defines "Day" as 7:00 a.m. to 9:00 p.m.							

² SCMC Section 11.44.020 defines "Night" as 9:00 p.m. to 7:00 a.m.

Source: SCMC Section 11.44.040(A)

Table 4 Corrections to Noise Limits

Noise Condition	Correction (in dB)
Repetitive Impulsive Noise	-5
Steady Whine, Screech or Hum	-5
Noise Occurring More Than 5 But Less Than 15 Minutes Per Hour ¹	+5
Noise Occurring More Than 1 But Less Than 5 Minutes Per Hour ¹	+10
Noise Occurring Less Than 1 Minute Per Hour ¹	+20
¹ These corrections apply to daytime noise level limits only. Source: SCMC Section 11.44.040(B)	

SCMC Section 11.44.060(A). It shall be unlawful for any person within the City to use or operate any radio receiving set, musical instrument, phonograph, television set, or other machine or device for the producing or reproducing of sound at any time in such a manner as to produce noise levels on residential land which would disturb the peace, quiet and comfort of neighboring residents or any reasonable person of normal sensitivity residing in the area.

SCMC Section 11.44.070. Any noise level from the use or operation of any machinery, equipment, pump, fan, air conditioning apparatus, refrigerating equipment, motor vehicle, or other mechanical or electrical device, or in repairing or rebuilding any motor vehicle, which exceeds the noise limits as set forth in Section 11.44.040 at any property line, or, if a condominium or rental units, within any condominium or rental unit within the complex, shall be a violation of this chapter.

SCMC Section 11.44.080. No person shall engage in any construction work which requires a building permit from the City on sites within 300 feet of a residentially zoned property except between the hours of 7:00 a.m. to 7:00 p.m., Monday through Friday, and 8:00 a.m. to 6:00 p.m. on Saturday. Further, no work shall be performed on the following public holidays: New Year's Day, Independence Day, Thanksgiving, Christmas, Memorial Day, and Labor Day. Emergency work as defined in SCMC Section 11.44.020(D) is permitted at all times. The Department of Community Development may issue a permit for work to be done "after hours"; provided, that containment of construction noises is provided.

SCMC Section 11.44.090. The noise limits as described in SCMC Section 11.44.040(A) shall apply to any use of sound-amplifying equipment.

SCMC Section 17.57.020(E). For residential properties and structures, all air conditioners, antennas, heating, cool and ventilating equipment, and all other mechanical, lighting, or electrical devices shall be screening, shielded and/or sound buffered from surrounding properties and streets.

3 Methodology

3.1 Construction Noise

Construction noise was estimated using the FHWA Roadway Construction Noise Model (RCNM) (FHWA 2006). RCNM predicts construction noise levels for a variety of construction operations based on empirical data and the application of acoustical propagation formulas. Using RCNM, construction noise levels were estimated at noise sensitive receivers near the project site. RCNM provides reference noise levels for standard construction equipment, with an attenuation rate of 6 dBA per doubling of distance for stationary equipment.

Variation in power imposes additional complexity in characterizing the noise source level from construction equipment. Power variation is accounted for by describing the noise at a reference distance from the equipment operating at full power and adjusting it based on the duty cycle of the activity to determine the L_{eq} of the operation (FHWA 2018). Each phase of construction has a specific equipment mix, depending on the work to be accomplished during that phase. Each phase also has its own noise characteristics; some will have higher continuous noise levels than others, and some have high-impact noise levels.

Construction activity would result in temporary noise in the project site vicinity, exposing surrounding nearby receivers to increased noise levels. Construction noise would typically be higher during the heavier periods of initial construction (i.e., site preparation and grading) and would be lower during the later construction phases (i.e., building construction and paving). Typical heavy construction equipment during project grading could include dozers, loaders, graders, excavators, lifts, water trucks and dump trucks. It is assumed that diesel engines would power all construction equipment. Construction equipment would not all operate at the same time or location. In addition, construction equipment would not be in constant use during the 8-hour operating day.

Over the course of a typical construction day, construction equipment would be located as close as 105 feet to adjacent noise sensitive properties to the east but would typically be located at an average distance farther away due to the nature of construction and the lot size of the project. For example, during a typical construction day, the equipment may operate across the horizontal distance of the site (105 to 1,050 feet) from single-family residents to the east. Therefore, it is assumed that over the course of a typical construction day the construction equipment would operate at an average distance of 200 feet from adjacent noise sensitive properties. This is also a conservative estimate for off-site construction for roadway improvements that would occur on 13th Street, 12th Street, Arch Street, and Railroad Avenue, which would occur approximately 200 feet from the nearest residences at the closest point, but would average a further distance over a typical construction day.

Construction noise is typically loudest during activities that involve excavation and moving soil, such as site preparation and grading. A potential construction scenario includes a grader, front-end loader, and a dump truck working during grading to excavate and move soil. At a distance of 200 feet, a grader, front-end loader and a dump truck would generate a noise level of 70 dBA L_{eq} (RCNM calculations are included in Appendix B).

3.2 Groundborne Vibration

The proposed project would not include any substantial vibration sources associated with operation. Thus, construction activities have the greatest potential to generate groundborne vibration affecting nearby receivers, especially during grading and excavation of the project site. The greatest vibratory source during construction within the project vicinity would be an excavator. A large bulldozer was used as a proxy for an excavator for the purpose of this analysis as they create similar vibration levels during construction activities. Neither blasting nor pile driving would be required for construction of the project. Construction vibration estimates are based on vibration levels reported by Caltrans and FTA (Caltrans 2020, FTA 2018). Table 5 shows typical vibration levels for various pieces of construction equipment used in the assessment of construction vibration (FTA 2018).

Equipment	PPV at 25 ft. (in/sec)	
Vibratory Roller	0.0210	
Large Bulldozer	0.089	
Loaded Trucks	0.076	
Small Bulldozer	0.003	
Source: FTA 2018		

 Table 5
 Vibration Levels Measured during Construction Activities

Although groundborne vibration is sometimes noticeable in outdoor environments, it is almost never annoying to people who are outdoors; therefore, the vibration level threshold is assessed at occupied structures (FTA 2018). Therefore, all vibration impacts are assessed at the structure of an affected property.

3.3 Operational Noise Sources

On-site noise sources would include general conversations, landscape maintenance, waste hauling, parking lot activities, and rooftop heating, ventilation, and air conditioning (HVAC) units and exhaust fans. Landscape maintenance and waste hauling are regulated by the noise ordinance as discussed in Chapter 7.04 of the City's Municipal Code. The project would not have outdoor production activities; therefore, production activities would be contained with the interior environment and would not generate audible noise at nearby sensitive receivers. Thus, the primary noise sources of concern would be associated with HVAC units, exhaust fans, and parking lot activities as there are no specific regulations beyond the limitation of noise levels. These on site-noise sources were modeled with SoundPLAN. Propagation of modeled stationary noise sources was based on ISO Standard 9613-2, "Attenuation of Sound during Propagation Outdoors, Part 2: General Method of Calculation." The assessment methodology assumes that all receivers would be downwind of stationary sources. This is a worst-case assumption for total noise impacts since only some receivers would be downwind at any one time.

Mechanical Equipment

The project would include rooftop HVAC units and exhaust fans. Mechanical equipment would be associated with the studios (Buildings 1 through 19), production support, office, gym, and catering buildings. Based on project plan specifications, representative sound power levels for the proposed Daiken HVAC and Greencheck exhaust fan equipment were applied for analysis. The manufacturer's

noise data is provided below in Table 6 (see Appendix C for specification sheets). For a conservative scenario, the units were assumed conservatively to operate at 100 percent of an hour for 24 hours. All HVAC units were modeled as being three feet above roof top elevation. Noise propagation was estimated in SoundPLAN using algorithms from ISO Standard 9613-2, "Attenuation of Sound during Propagation Outdoors, Part 2: General Method of Calculation."

	Noise Levels in dB ¹ Measured at Octave Frequencies								Overall Noise
Representative Unit	63 Hz	125 Hz	250 Hz	500 Hz	1 KHz	2 KHz	4 KHz	8 KHz	Level (dBA)
RDT101D	88	85	81	79	78	73	65	58	85
RDT071D	85	82	78	76	75	70	62	55	79
RDT081D	84	81	77	75	74	69	61	54	78
RDT120D	86	83	79	77	76	71	63	56	80
DSP005A	78	79	87	84	87	81	78	72	89
DSP006A	70	72	80	77	80	79	76	71	85
DSP010A	81	85	81	84	80	77	73	68	85
DSP018A	87	86	91	86	84	81	76	71	89
DSP025A	87	86	91	86	84	81	76	71	89
Exhaust Fan									
Greencheck	84	92	86	80	76	73	66	61	83

Table 6 HVAC Noise Levels

Hz = Hertz; KHz = kilohertz

See Appendix C for manufacturers' specifications.

Parking Lot Activities

Activities from patrons of the parking areas would include vehicle arrival, limited idling of the vehicle, occupants exiting their vehicle, door closure, conversations among passengers, occupants entering the vehicle, vehicle startup, and departure. SoundPLAN was used to model parking lot noise using SoundPLAN database noise sources. The parking lot type was set as "visitors and staff."

3.4 Mobile Source Noise

Noise affecting the project site and surrounding land uses is primarily from traffic on Railroad Avenue and rail operations along the Antelope Valley Line, of which both are located adjacent to and west of the project site. The proposed development is anticipated to generate new vehicular trips on project area roadways. The project would generate approximately 6,993 trips per day (Gibson Transportation Consulting, Inc. 2022). Existing and project generated traffic scenarios were modeled using to determine the increase in traffic noise due to the operation of the project. Off-site traffic noise increases were modeled with the FHWA RD-77-108 Traffic Noise Prediction Model.

Traffic parameters are summarized in Table 7. The posted speed limits for project area roadways ranges from 25 to 50 miles per hour (mph). Traffic distribution through the day applied to traffic noise modeling assumes 97 percent automobiles, 2 percent medium trucks, and 1 percent heavy trucks, which is a typical traffic distribution. Traffic distribution through the day was modeled assuming 80 percent of total daily vehicle traffic during daytime hours and 20 percent of daily vehicle traffic during nighttime hours for modeled roadways.

Table 7 Modeled Traffic Speeds and Volumes

Roadway	Segment	Speed (mph)	Existing	Existing Plus Project No DDEP	Existing Plus Project With DDEP	Existing Plus Project Railroad Crossing Upgrade	Future	Future Plus Project No DDEP	Future Plus Project With DDEP	Future Plus Project Railroad Crossing Upgrade
Bouquet Canyon	From the north to Newhall Ranch Road	45	44,350	44,970	44,970	44,970	53,200	53,820	53,820	53,200
Road	Newhall Ranch Road to Soledad Canyon Road	45	44,450	45,070	45,070	45,070	52,800	53,420	53,420	52,530
	Soledad Canyon Road to Magic Mountain Road	45	31,650	32,590	32,590	32,590	45,100	46,140	47,240	46,300
Railroad Avenue	Magic Mountain Road to Oak Ridge Drive	50	38,420	39,800	39,800	33,700	52,100	53,480	54,980	53,600
	Oak Ridge Drive to 13 th Street	50	27,180	28,630	28,630	28,630	31,200	32,650	35,750	34,300
	13 th Street to Lyons Avenue	45	28,020	31,400	30,460	31,400	39,200	42,580	36,940	34,500
	Lyons Avenue to Newhall Avenue	35	23,640	25,520	24,580	25,520	28,200	30,080	26,340	25,400
Newhall Avenue	Railroad Avenue to Valle Del Oro	30	34,020	35,900	34,960	35,900	49,200	51,080	46,640	45,700
	Valle Del Oro to Sierra Highway	40	32,010	33,570	32,630	33,570	37,300	38,860	34,520	33,900
Arch Street	13 th Street to 12 th Street	25	6,890	9,720	8,310	7,630	4,700	10,140	10,470	9,600
Placerita Canyon Road	12 th Street to the south	35	2,640	4,010	4,950	4,010	5,900	7,270	12,610	7,690
Dockweiler Drive	Placerita Canyon Road to Valle Del Oro	40	0	1,380	1,630	0	0	0	11,930	10,300
	Valle Del Oro to Sierra Highway	35	4,360	4,360	5,990	4,360	10,100	10,100	8,600	8,600

Roadway	Segment	Speed (mph)	Existing	Existing Plus Project No DDEP	Existing Plus Project With DDEP	Existing Plus Project Railroad Crossing Upgrade	Future	Future Plus Project No DDEP	Future Plus Project With DDEP	Future Plus Project Railroad Crossing Upgrade
Orchard Village Road	Wiley Canyon Road to Lyons Avenue	45	15,230	15,420	15,420	15,420	19,700	19,890	20,190	20,000
	Lyons Avenue to the south	45	7,180	7,370	7,370	7,370	6,200	6,390	7,390	7,200
Wiley Canyon Road	Lyons Avenue to Orchard Village Road	45	17,790	17,980	17,980	17,980	19,800	19,990	22,090	21,900
Sierra Canyon	From the north to SR 14 ramps	50	18,990	19,630	19,490	19,630	47,200	47,840	48,100	47,600
Road	SR 14 ramps to Placerita Canyon Road	50	16,060	16,880	17,030	16,880	39,400	40,220	40,570	40,000
	SR 14 ramps to Placerita Canyon Road	50	18,480	18,600	19,100	18,600	34,900	35,020	41,820	41,200
	Placerita Canyon Road to Dockweiler Road	50	18,640	18,760	20,030	18,760	27,400	27,520	32,790	31,400
	Dockweiler Road to Newhall Avenue	50	14,280	15,060	14,280	14,280	28,800	21,500	23,400	23,400
	Newhall Avenue to the south	50	37,510	37,830	37,830	37,830	40,100	40,420	40,020	39,700
Soledad Canyon Road	Bouquet Canyon Road to Colden Valley Road	50	15,330	15,770	15,770	15,770	28,000	28,440	29,440	29,000
Magic Mountain Road	Railroad Avenue to Tourney Road	35	9,370	9,440	9,440	9,440	18,900	18,070	18,870	18,800
Oak Ridge Drive	Railroad Avenue to Via Princessa	25	6,900	11,720	10,780	11,920	11,700	16,520	13,480	9,600
	Railroad Avenue to Project Entrance	35	11,920	13,430	13,430	13,430	14,300	15,810	16,710	15,200

Segment	Speed (mph)	Existing	Existing Plus Project No DDEP	Existing Plus Project With DDEP	Existing Plus Project Railroad Crossing Upgrade	Future	Future Plus Project No DDEP	Future Plus Project With DDEP	Future Plus Project Railroad Crossing Upgrade	
Railroad Avenue to Newhall Avenue	25	24,550	26,060	26,060	26,060	40,500	42,010	43,210	41,700	
Newhall Avenue to Orchard Village Road	35	26,010	27,140	27,140	27,140	33,300	34,430	35,630	34,500	
Orchard Village Road to Wiley Canyon Road	40	25,880	26,820	26,920	26,820	33,200	34,140	35,440	34,500	
Wiley Canyon Road to I-5 ramps	45	44,350	44,970	44,970	44,970	53,200	53,820	53,820	53,200	
Source: Gibson Transportation Consulting, Inc 2022										
	Segment Railroad Avenue to Newhall Avenue Newhall Avenue to Orchard Village Road Orchard Village Road to Wiley Canyon Road Wiley Canyon Road to I-5 ramps Transportation Consulting, Inc 20 er Drive Extension Project	SegmentSpeed (mph)Railroad Avenue to Newhall Avenue25 Newhall AvenueNewhall Avenue to Orchard Village Road35 Orchard Village RoadOrchard Village Road to Wiley Canyon Road40 Wiley Canyon Road to I-5 rampsWiley Canyon Road to I-5 ramps45 rampsImage: Consulting C	SegmentSpeed (mph)ExistingRailroad Avenue to Newhall Avenue2524,550Newhall Avenue3526,010Orchard Village Road3526,010Orchard Village Road to Wiley Canyon Road4025,880Wiley Canyon Road to I-54544,350rampsFransportation Consulting, Inc 202222er Drive Extension Project2524,550	SpeedExisting Plus Project No DDEPRailroad Avenue to Newhall Avenue2524,55026,060Newhall Avenue3526,01027,140Orchard Village Road4025,88026,820Wiley Canyon Road4544,35044,970Wiley Canyon Road to I-54544,35044,970Irransportation Consulting, Inc 2022 er Drive Extension Project2526	SegmentExisting Plus Project No DDEPExisting Plus Project With DDEPRailroad Avenue to Newhall Avenue2524,55026,06026,060Newhall Avenue to Orchard Village Road3526,01027,14027,140Orchard Village Road to Wiley Canyon Road to I-54025,88026,82026,920Wiley Canyon Road to I-54544,35044,97044,970Irransportation Consulting, Inc 2022 er Drive Extension ProjectIrransportation Consulting, Inc 2022Irransportation Consulting, Inc 2022	Speed SegmentSpeed (mph)Existing ExistingExisting Plus Project No DDEPExisting Plus Project With 	SegmentExisting (mph)ExistingProject No DDEPExisting Plus Project With DDEPExisting Plus Project Railroad Crossing UpgradeFutureRailroad Avenue to Newhall Avenue2524,55026,06026,06026,06040,500Newhall Avenue3526,01027,14027,14027,14033,300Orchard Village Road4025,88026,82026,92026,82033,200Wiley Canyon Road to I-54544,35044,97044,97044,97053,200Transportation Consulting, Inc 2022 er Drive Extension ProjectExisting Plus Project With Project With DDEPExisting Plus Project With DDEPExisting Plus Project With DDEPExisting Plus Project Railroad Crossing UpgradeFuture	SegmentExisting Plus Project No DDEPExisting Plus Project With DDEPExisting Plus Project Railroad Crossing UpgradeFuture PutureProject No DDEPRailroad Avenue to Newhall Avenue2524,55026,06026,06026,06040,50042,010Newhall Avenue to Orchard Village Road3526,01027,14027,14027,14033,30034,430Orchard Village Road to Wiley Canyon Road to 1-54544,35044,97044,97044,97053,20053,820Transportation Consulting, Inc 2022 er Drive Extension ProjectVillage Road to4025,88026,82044,97044,97053,20053,820	Speed SegmentExisting Project No DDEPExisting Plus Project With DDEPExisting Plus Project Railroad Crossing UpgradeFuture Plus Project No DDEPFuture Plus Project No DDEPRailroad Avenue to Newhall Avenue2524,55026,06026,06026,06040,50042,01043,210Newhall Avenue3526,01027,14027,14027,14033,30034,43035,630Orchard Village Road4025,88026,82026,92026,82033,20034,14035,440Wiley Canyon Road4025,88044,97044,97044,97053,20053,82053,820Irransportation Consulting, Inc 2022 er Drive Extension ProjectUUUUUU	

I-5=Interstate 5

3.5 Significance Thresholds

The following thresholds are based on City of Santa Clarita General Plan Noise Element Noise Compatibility Guidelines, Santa Clarita Municipal Code, FTA quantitative standard for construction noise, and CEQA Guidelines Appendix G. Noise impacts would be considered significant if:

Threshold 1. The project would result in the generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.

- Based on FTA Transit Noise and Vibration Impact Assessment (2018) criteria and because the project site and near properties are zoned residential, construction noise would be significant if noise levels exceed 80 dBA Leq for an 8-hour period or construction is conducted outside the allowable hours for construction as stated in 11.44.080 -Construction and Building of the Santa Clarita Municipal Code.
- Operational noise would be significant if operational noise exceeds the daytime (7:00 a.m. to 9:00 p.m.) standard of 65 dBA L_{eq} or the nighttime (9:00 p.m. to 7:00 a.m.) standard of 55 dBA L_{eq} at residential uses and exceeds the daytime standard of 80 dBA L_{eq} or the nighttime standard of 70 dBA L_{eq} at commercial and manufacturing uses.
- For purposes of this analysis, a significant impact would occur if project-related traffic increases the ambient noise environment of noise-sensitive land uses by 3 dBA, which would be a barely perceptible increase in traffic noise.

Threshold 2. The project would result in the generation of excessive groundborne vibration or groundborne noise levels.

 Vibration levels equal to or below 0.4 in./sec. PPV at residential structures would prevent structural damage for most residential building and vibration levels equal to or less than 1.0 in./sec. PPV would prevent damage to more substantial construction, such as high-rise, commercial, and industrial buildings. For human annoyance, the vibration level threshold at which transient, or temporary, vibration sources are considered to be distinctly perceptible is 0.24 in./sec. PPV.

Threshold 3. For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, if the project exposes people residing or working in the project area to excessive noise levels.

4 Impact Analysis

Noise Threshold 1

Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies (*Less Than Significant Impact*).

Construction

As described in Section 3.1, *Construction Noise*, at a distance of 200 feet, a grader, front-end loader, and a dump truck would generate a noise level of 70 dBA L_{eq}. For residentially zoned properties, the FTA's construction noise limit is 80 dBA; therefore, construction noise levels from the project's onsite and off-site construction would not exceed construction noise thresholds. Furthermore, construction activities would be restricted to established time limitations pursuant to the Santa Clarita Municipal Code Section 11.44.080 of 7:00 a.m. to 7:00 p.m., Monday through Friday, and 8:00 a.m. to 6:00 p.m. on Saturday. Further, no work shall be performed on the following public holidays: New Year's Day, Independence Day, Thanksgiving, Christmas, Memorial Day, and Labor Day. Therefore, project construction noise impacts from on-site and off-site construction would be less than significant.

Operation

Overall Continuous On-site Operational Noise

To determine the total continuous operational noise level at adjacent land uses, HVAC units, exhaust fans, and parking lot activities were modeled. Receiver locations and noise level contours are shown on Figure 5 and noise levels are shown in Table 8.

Figure 5 Modeled Receivers and Noise Contours

Table 8 Operational Noise

			Exceedance			
Receiver	Description	Noise Level (dBA L _{eq}) ¹	Daytime Threshold ²	Nighttime Threshold? ³		
OFF1	Residence - east	40	No	No		
OFF2	Residence - east	40	No	No		
OFF3	Residence - east	41	No	No		
OFF4	Residence - east	42	No	No		
OFF5	Residence - east	43	No	No		
OFF6	Residence - east	43	No	No		
OFF7	Residence - east	44	No	No		
OFF8	Residence - east	44	No	No		
OFF9	Mobile Home Park - west	44	No	No		
OFF10	Residence - north	47	No	No		
OFF11	Residence - northeast	34	No	No		

¹Operational noise includes HVAC units, exhaust fans, and parking lot activities.

² Daytime thresholds would be exceeded if exterior noise levels exceed 65 dBA at residential uses and 80 dBA at commercial uses from 7:00 a.m. to 10:00 p.m.

³ Nighttime thresholds would be exceeded if exterior noise levels exceed 55 dBA at residential uses and 70 dBA at commercial uses from 10:00 p.m. to 7:00 a.m.

See Figure 5 for receiver locations.

As shown in Table 8, operational activities on the project site would generate exterior noise levels ranging from 34 dBA L_{eq} to 47 dBA L_{eq} at the nearest off-site sensitive receivers located adjacent to the project site. Impacts would be significant if project-related operational noise exceeds 65 dBA L_{eq} during the daytime hours (7:00 a.m. to 10:00 p.m.) and 55 dBA L_{eq} during nighttime hours (10:00 p.m.) for residential uses. The combined operational noise from HVAC, exhaust fan, and parking lot noise would not exceed Santa Clarita's daytime and nighttime noise standards at noise sensitive uses adjacent to the project site. Therefore, operational noise levels would be less than significant.

Off-site Traffic Noise

The project would generate new vehicle trips that would increase noise levels on nearby roadways. The increase in roadway noise with the addition of project traffic is shown in Table 9 for existing scenarios and Table 10 for future scenarios. Due to the relatively small increase in overall project contribution traffic volumes from project-generated traffic, noise level increases of less than 1 dBA to 1 dBA L_{dn} for the majority of the roadway segments modeled. Two roadway segments resulted in traffic noise level increases of 3 dBA, however, there are no sensitive receivers along these segments Therefore, the project's traffic noise increase would not exceed 3 dBA or more at noise sensitive land uses, and impacts would be less than significant.

			Existing Plus Project No		Existing Plus Project With		Existing Plus Project Railroad	
Roadway	Segment	Existing	DDEP	Change	DDEP	Change	Crossing Upgrade	Change
Bouquet Canyon	From the north to Newhall Ranch Road	74	74	<1	74	<1	74	<1
NUdu	Newhall Ranch Road to Soledad Canyon Road	74	74	<1	74	<1	74	<1
	Soledad Canyon Road to Magic Mountain Road	73	73	<1	73	<1	73	73 <1
Railroad Avenue	Magic Mountain Road to Oak Ridge Drive	74	74	<1	74	<1	74	-1
	Oak Ridge Drive to 13 th Street	73	73	<1	73	<1	73	<1
	13 th Street to Lyons Avenue	72	73	<1	72	<1	73	<1
	Lyons Avenue to Newhall Avenue	70	70	<1	70	<1	70	<1
Newhall Avenue	Railroad Avenue to Valle Del Oro	71	72	<1	72	<1	72	<1
	Valle Del Oro to Sierra Highway	72	72	<1	72	<1	72	<1
Arch Street	13 th Street to 12 th Street	65	66	1	65	1	65	<1
Placerita Canyon Road	12 th Street to the south	61	62	2	63	3	62	2
Dockweiler Drive	Placerita Canyon Road to Valle Del Oro		58		59			
	Valle Del Oro to Sierra Highway	63	63	<1	64	1	63	<1
Orchard Village	Wiley Canyon Road to Lyons Avenue	69	69	<1	69	<1	69	<1
Road	Lyons Avenue to the south	66	66	<1	66	<1	66	<1
Wiley Canyon Road	Lyons Avenue to Orchard Village Road	70	70	<1	70	<1	70	<1
Sierra Canyon	From the north to SR 14 ramps	71	71	<1	71	<1	71	<1
Road	SR 14 ramps to Placerita Canyon Road	70	71	<1	71	<1	71	<1
	SR 14 ramps to Placerita Canyon Road	71	71	<1	71	<1	71	<1
	Placerita Canyon Road to Dockweiler Road	71	71	<1	71	<1	71	<1
	Dockweiler Road to Newhall Avenue	70	70	<1	70	<1	70	<1
	Newhall Avenue to the south	74	74	<1	74	<1	74	<1

Table 9 Offsite Traffic Noise Increases, dBA Ldn at 50 Feet – Existing Scenarios

Roadway	Segment	Evicting	Existing Plus Project No	Change	Existing Plus Project With	Change	Existing Plus Project Railroad	Change
Soledad Canyon Road	Bouquet Canyon Road to Colden Valley Road	70	70	<1	70	<1	70	<1
Magic Mountain Road	Railroad Avenue to Tourney Road	66	66	<1	66	<1	66	<1
Oak Ridge Drive	Railroad Avenue to Via Princessa	65	67	2	67	2	67	2
13 th Street	Railroad Avenue to Project Entrance	67	68	1	68	1	68	1
Lyons Avenue	Railroad Avenue to Newhall Avenue	70	70	<1	70	<1	70	<1
	Newhall Avenue to Orchard Village Road	70	71	<1	71	<1	71	<1
	Orchard Village Road to Wiley Canyon Road	71	71	<1	71	<1	71	<1
	Wiley Canyon Road to I-5 ramps	74	74	<1	74	<1	74	<1

Source: Gibson Transportation Consulting, Inc., Transportation Assessment of the Blackhall Studios Project, 2022

DDEP=Dockweiler Drive Extension Project

I-5 = Interstate 5

Table 10 Offsite Traffic Noise Increases, dBA Ldn at 50 Feet – Future Scenarios

Roadway	Segment	Future No Project No DDEP	Future No Project With DDEP	Change	Future Plus Project No DDEP	Change	Future Plus Project With DDEP	Change
Bouquet Canyon	from the north to Newhall Ranch Road	75	75	<1	75	<1	75	<1
Road	Newhall Ranch Road to Soledad Canyon Road	75	75	<1	75	<1	75	<1
	Soledad Canyon Road to Magic Mountain Road	74	74	<1	74	<1	74	<1
Railroad Avenue	Magic Mountain Road to Oak Ridge Drive	76	76	<1	76	<1	76	<1
	Oak Ridge Drive to 13 th Street	73	74	<1	74	<1	74	<1
	13 th Street to Lyons Avenue	74	73	-1	74	<1	73	<1
	Lyons Avenue to Newhall Avenue	71	70	<1	71	<1	71	<1
Newhall Avenue	Railroad Avenue to Valle Del Oro	73	73	<1	73	<1	73	<1
	Valle Del Oro to Sierra Highway	73	72	<1	73	<1	72	<1

Roadway	Segment	Future No Project No DDEP	Future No Project With DDEP	<u>Change</u>	Future Plus Project No DDEP	Chang <u>e</u>	Future Plus Project With DDEP	Change
Arch Street	13 th Street to 12 th Street	63	66	3	66	3	66	<1
Placerita Canyon Road	12 th Street to the south	64	65	1	65	1	67	2
Dockweiler Drive	Placerita Canyon Road to Valle Del Oro	_	67	-	_	-	68	-
	Valle Del Oro to Sierra Highway	66	66	-1	66	<1	66	<1
Orchard Village	Wiley Canyon Road to Lyons Avenue	71	71	<1	71	<1	71	<1
Road	Lyons Avenue to the south	66	66	1	66	<1	66	<1
Wiley Canyon Road	Lyons Avenue to Orchard Village Road	71	71	0	71	<1	71	<1
Sierra Canyon Road	From the north to SR 14 ramps	75	75	0	75	<1	75	<1
	SR 14 ramps to Placerita Canyon Road	74	74	0	74	<1	75	<1
	SR 14 ramps to Placerita Canyon Road	74	75	1	74	<1	75	<1
	Placerita Canyon Road to Dockweiler Road	73	73	1	73	<1	74	<1
	Dockweiler Road to Newhall Avenue	73	72	-1	72	-1	72	<1
	Newhall Avenue to the south	74	74	<1	75	<1	74	<1
Soledad Canyon Road	Bouquet Canyon Road to Colden Valley Road	73	73	<1	73	<1	73	<1
Magic Mountain Road	Railroad Avenue to Tourney Road	69	69	<1	69	<1	69	<1
Oak Ridge Drive	Railroad Avenue to Via Princessa	67	66	-1	68	1	68	1
13 th Street	Railroad Avenue to Project Entrance	68	68	<1	68	<1	69	<1
Lyons Avenue	Railroad Avenue to Newhall Avenue	72	72	<1	72	<1	73	<1
	Newhall Avenue to Orchard Village Road	72	72	<1	72	<1	72	<1
	Orchard Village Road to Wiley Canyon Road	72	72	<1	72	<1	72	<1
	Wiley Canyon Road to I-5 ramps	75	75	<1	75	<1	75	<1

Source: Gibson Transportation Consulting, Inc., Transportation Assessment of the Blackhall Studios Project, 2022

DDEP=Dockweiler Drive Extension Project

I-5 = Interstate 5

Noise Threshold 2

Generation of excessive groundborne vibration or groundborne noise levels (*Less Than Significant Impact*).

Construction activities known to generate excessive groundborne vibration, such as pile driving, would not be required to implement the project. The greatest anticipated source of vibration during general project construction activities would be from a large bulldozer, which may be used within 35 feet of the nearest off-site structure during construction of the proposed 12-foot perimeter wall (off-site roadway improvements would occur at a further distance and therefore 35 feet is a conservative assumption for on-site and off-site improvements). A large bulldozer was used as a proxy for an excavator for the purpose of this analysis as they create similar vibration levels during construction activities. A large bulldozer creates approximately 0.089 in/sec PPV at a distance of 25 feet (Caltrans 2013). This would equal a vibration level of 0.061 in/sec PPV at 35 feet. This vibration level is lower than the human annoyance threshold of 0.24 in/sec PPV and the residential damage threshold of 0.4 in./sec. PPV. Therefore, temporary vibration impacts associated with on-site and off-site construction would be less than significant.

The project does not include any substantial vibration sources associated with operation. Therefore, operational vibration impacts would be less than significant.

Noise Threshold 3

For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, of the project expose people residing or working in the project area to excessive noise levels (*No Impact*).

The Whiteman Airport is the nearest public airport, located approximately 11 miles to the southeast of the project site. According to the noise compatibility contours figure for the Whiteman Airport in the Whiteman Airport Master Plan, the project site is located outside the airport's 60 CNEL noise contour (Los Angeles County Airports 2011). Therefore, no substantial noise exposure from airport noise would occur to construction workers, users, or employees on the project sites, and no impacts would occur.

5 Conclusions

The project would generate both temporary construction-related noise and long-term noise associated with operation of the project. Construction noise would not exceed FTA noise standards at the nearby land uses and impacts from construction noise would be less than significant.

Combined operational activities on the project site would generate noise levels up to 47 dBA L_{eq} at off-site residential receivers. Therefore, the combined operational noise from HVAC, exhaust fans, and parking lot activities would not exceed the City's daytime or nighttime noise standard, and impacts from operation noise would be less than significant.

Project-generated traffic would generate up to an increase of 2 dBA at adjacent roadways. This is below the threshold of 3 dBA; therefore, the off-site traffic noise increase would be less than significant.

The project would generate groundborne vibration during construction. However, constructiongenerated groundborne vibration would not exceed the applicable vibration threshold at the nearest structures, and construction-related vibration impacts would be less than significant.

The project site is outside the noise contours for the Whiteman Airport. Therefore, no substantial noise exposure would occur to construction workers, employees, or users of the project from aircraft noise.

Given the aforementioned, the project would result in less than significant impacts.

6 References

- California Department of Transportation (Caltrans). 2013. *Technical Noise Supplement to the Traffic Noise Analysis Protocol*. (CT-HWANP-RT-13-069.25.2) September. Available online: http://www.dot.ca.gov/hq/env/noise/pub/TeNS_Sept_2013B.pdf. Accessed April 2020.
 - . 2020 Transportation and Construction Vibration Guidance Manual. (CT-HWANP-RT-13-069.25.3) September. Available online: http://www.dot.ca.gov/hq/env/noise/pub/TCVGM_Sep13_FINAL.pdf. Accessed April 2020.
- Crocker, Malcolm J. (Editor). 2007. Handbook of Noise and Vibration Control Book, ISBN: 978-0-471-39599-7, Wiley-VCH, October.
- Federal Highway Administration (FHWA). 2006. FHWA Highway Construction Noise Handbook. (FHWAHEP-06-015; DOT-VNTSC-FHWA-06-02). Available online: https://www.fhwa.dot.gov/environment/noise/construction_noise/handbook/handbook01. cfm. Accessed April 2020.
- Federal Transit Administration (FTA). 2018. Transit Noise and Vibration Impact Assessment. November. Available online: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/researchinnovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf. Accessed April 2020.
- Gibson Transportation Consulting, Inc. 2022. Transportation Assessment for the Blackhall Studios Project, Santa Clarita, California. January.
- Kinsler, Lawrence E. and R. Frey, Austin and B. Coppens, Alan and V. Sanders, James. Fundamentals of Acoustics, 4th Edition. ISBN 0-471-84789-5. Wiley-VCH, December 1999.
- Newson Brown Acoustics LLC. 2021. Blackhall Studios: Potential Airborne Train Noise Intrusion to Stages, Preliminary Report. August 21.
Appendix A

Noise Measurement Data

Freq Weight · A	
Time Weight : SLOW Level Range : 30-90 Max dB : 54.8 - 2021/11/18 12:58 Level Range : 30-90 SEL : 72.5 Leq : 43.0	: 58
No.s Date Time (d	3)
Leq : 43.0 No.s Date Time (d 	a) 0 2 4 6 4 4 4 4 4 4 4 4 4 4 1 3 6 4 4 1 <t< td=""></t<>
90 2021/11/18 12:55:36 39	.2

91 92	2021 2021	L/1 L/1	$\frac{1}{1}$	L8 1 L8 1	12 12	55	: 39 : 42	36.5 38.5
93	2021	/1	1/1		12	55	45	41.2
94 95	2021	1/1	1/1	L8 1	12	55	:51	40.2
96 97	2021	L/1 /1	.1/1 1/1	L8 1 18	12 : 1 2 :	55	:54 ·57	41.6
98	2021	1/1	1/1	18	12	56	00	41.9
99 100	2021	L/1 L/1	.1/ .1/1	L8 . L8 :	L2 : L2 :	56	:03	41.3
101	2021	1/1	$\frac{1}{1}$	18	12	56	:09 12	41.6
102	2021	1/1	1/1	18	12	56	12	40.4
104 105	2021	L/1 /1	$\frac{1}{1}$	L8 1 1 8	12 : 12 :	56	:18 ·21	40.9
106	2021	1/1	1/1	18	12	56	24	44.3
107	2021	/1	.1/ .1/1	L8 . L8 :	LZ : 12 :	:56	: 30	41.4
109 110	2021	/1	1/1	18	12	56	: 33	40.8
111	2021	1/1	1/1		12	56	39	43.4
112 113	2021	_/1 _/1	.1/. 1/1	L8 . L8 :	L2 : L2 :	56	:42 :45	46.0
114	2021	1/1	1/1	18 1	12	56	48	44.8
116	2021	1/1	$\frac{1}{1/1}$	18 1	12	56	:54	42.3
117 118	2021	L/1 /1	.1/1 1/1	L8 1 18	12 : 12 :	56	: 57 : 00	41.2
119	2021	1/1	1/1	18	12	57	03	42.2
120	2021	L/1 L/1	.1/ .1/1	L8 . L8 :	L2 : L2 :	57	06	41.5
122 123	2021	1/1	$\frac{1}{1}$	18	12	57	:12 ·15	41.6
124	2021	1/1	1/1		12	57	18	42.3
125	2021	L/1 L/1	.1/. 1/1	L8 . L8 :	L2 : L2 :	:57	21	42.8
127	2021	1/1	1/1	18 1	12	57	27	42.0
128	2021	1/1	1/1	18	12	57	33	41.3
130 131	2021	/1	.1/1 1/1	L8 1 18 1	12 : 12 :	:57	: 36 : 39	40.5
132	2021	1/1	1/1	18	12	57	42	44.7
133	2021	1/1	1/1 1/1	L8 . L8 :	12	57	45	42.2
135 136	2021	1/1	$\frac{1}{1}$	18	12	57	:51 ·54	41.4
137	2021	1/1	1/1	18	12	57	57	42.7
138	2021	1/1	.1/ .1/1	L8 . L8 :	LZ : L2 :	58	:00	43.9
140 141	2021	L/1 /1	$\frac{1}{1}$	L8 1 1 8	12 : 12 :	58	:06 :09	43.9 43.0
142	2021	1/1	1/1	18	12	58	12	44.0
143 144	2021	1/1	.1/ .1/1	L8 . L8 :	LZ : L2 :	58	:15	42.2
145 146	2021	L/1 /1	$\frac{1}{1}$	L8 1 1 8	12 : 1 2 :	58	:21 ·24	43.6
147	2021	1/1	1/1	18	12	58	27	42.5
148	2021	1/1	1/1 1/1	L8 . L8 :	12	58	30	40.8
150 151	2021	L/1 /1	.1/1 1/1	L8 1 18	12 : 1 2 :	58	:36 ·39	40.6
152	2021	1/1	1/1	18	12	58	42	42.9
153	2021	1/1	1/1 1/1	L8 . L8 :	12	58	45	44.8
155 156	2021	1/1	$\frac{1}{1}$	18	12	58	:51 ·54	48.1
157	2021	1/1	1/1	18	12	58	57	53.9
158	2021	1/1	.1/ .1/1	L8 . L8 :	LZ : L2 :	:59	:00	49.8
160 161	2021	/1	$\frac{1}{1}$	18	12	59	:06	47.1
162	2021	1/1	1/1	18	12	59	12	46.4
163	2021	1/1	.1/ .1/1	L8 . L8 :	LZ : L2 :	:59	:15	44.4
165 166	2021	$\frac{1}{1}$	$\frac{1}{1}$	L8 1	12:	59	21	42.0
167	2021	1/1	1/1		12	59	27	41.2
168 169	2021	1/1	$\frac{1}{1}$	L8 1 L8 1	L2 : L2 :	:59	: 30 : 33	41.3
170 171	2021	1/1	$\frac{1}{1}$	L8 1	12	59	36	39.3
172	2021	1/1	1/1		12	59	42	40.5
173 174	2021	1/1	$\frac{1}{1}$	L8 1 L8 1	L2 : L2 :	:59	:45 :48	39.1 40.7
175 176	2021	1/1	$\frac{1}{1}$		12	59	51	39.3
177	2021	/1	1/		12	59	57	39.9
178 179	2021 2021	L/1 L/1	1/1 1/1	18 1 18 1	13: 13:	00	:00 :03	39.9 41.2
180	2021	/1	$\frac{1}{1}$	L8 1	13	00	06	44.3
182	2021	/1	1/1		13	00	:12	42.1
183 184	2021	L/1 /1	$\frac{1}{1}$	L8 1 L8 1	L3: 13:	00	:15 :18	39.4 37 3
185	2021	/1	1/1		13	00	21	36.4
187	2021	1/1	1/1	L0 . L8 :	13 13	00	24	30.2 39.0
188 189	2021 2021	L/1 [/1	$\frac{1}{1}$	L8 1 L8	13: 13:	00	: 30 : 33	39.7 40.9
190	2021	/1	1/1		13	00	36	40.1
191 192	2021	1/1	$\frac{1}{1}$	LØ 1 L8 1	13	00	42	4⊥.4 39.2
193 194	2021	L/1	$\frac{1}{1}$	L8 1 1 8 1	13	00	45	42.0 39.1
- J +	2021	-/ 1	/ -	-0 -				

195 196	2021,	/11/18 /11/18	13:00:51	40.7
197	2021,	/11/18	13:00:57	38.7
198 199	2021,	/11/18 /11/18	13:01:00	39.2 39.1
200	2021,	/11/18	13:01:06	40.3
201	2021,	/11/18 /11/18	13:01:09	41.6
203	2021	/11/18	13:01:15	42.3
204	2021	/11/18	13:01:18	42.1 39.9
206	2021	/11/18	13:01:24	39.3
208	2021,	/11/18	13:01:30	37.9
209	2021,	/11/18 /11/18	13:01:33	38.5
211	2021,	/11/18	13:01:39	38.7
212 213	2021, 2021	/11/18 /11/18	13:01:42	39.1 39.1
214	2021,	/11/18	13:01:48	40.1
215	2021	/11/18/	13:01:51	41.8
217	2021	/11/18	13:01:57	41.8
218	2021,	/11/18	13:02:00	40.6 39.5
220	2021	/11/18	13:02:06	38.6
222	2021,	/11/18	13:02:12	36.5
223 224	2021,	/11/18 /11/18	13:02:15	37.5
225	2021,	/11/18	13:02:21	40.2
226	2021, 2021	/11/18 /11/18	13:02:24	40.5
228	2021,	/11/18	13:02:30	42.1
229	2021	/11/18/	13:02:33	40.8
231	2021	/11/18	13:02:39	39.4
232	2021	/11/18	13:02:42	40.1
234	2021	/11/18	13:02:48	41.7
235	2021,	/11/18	13:02:51	41.4
237	2021,	/11/18 /11/18	13:02:57	41.9 41.2
239	2021,	/11/18	13:03:03	41.3
240 241	2021, 2021	/11/18 /11/18	13:03:06	40.8
242	2021,	/11/18	13:03:12	39.9
243 244	2021,	/11/18 /11/18	13:03:15	39.8 39.3
245	2021	/11/18	13:03:21	41.3
240	2021,	/11/10	13:03:24	43.2
248	2021,	/11/18 /11/18	13:03:30	42.5
250	2021,	/11/18	13:03:36	40.3
251	2021,	/11/18 /11/18	13:03:39	40.9
253	2021,	/11/18	13:03:45	37.7
254 255	2021,	/11/18/	13:03:48	38.3
256	2021	/11/18	13:03:54	37.6
257	2021	/11/18	13:04:00	37.8
259	2021	/11/18	13:04:03	38.5
260	2021,	/11/18	13:04:08	39.0
262	2021,	/11/18 /11/18	13:04:12	39.8 42 9
264	2021,	/11/18	13:04:18	44.1
265	2021, 2021	/11/18 /11/18	13:04:21 $13\cdot04\cdot24$	41.3 41.9
267	2021,	/11/18	13:04:27	42.5
268 269	2021,	/11/18 /11/18	13:04:30	42.9
270	2021	/11/18	13:04:36	40.7
272	2021,	/11/18	13:04:39	40.3
273 274	2021,	/11/18 /11/18	13:04:45	42.8
275	2021,	/11/18	13:04:51	41.6
276 277	2021, 2021	/11/18 /11/18	13:04:54	40.3
278	2021,	/11/18	13:05:00	43.4
279 280	2021,	/11/18	13:05:03	41.6 43.0
281 282	2021	/11/18	13:05:09	40.7
283	2021,	/11/18	13:05:15	38.8
284 285	2021, 2021	/11/18 /11/18	13:05:18	38.3 40 6
286	2021	/11/18	13:05:24	39.9
287 288	2021, 2021	/11/18 / <u>1</u> 1/18	13:05:27 13:05:30	43.0 40 1
289	2021,	/11/18	13:05:33	39.9
290 291	2021,	$\frac{11}{18}$	13:05:36	43.8 42.1
292	2021	/11/18	13:05:42	42.4
295	2021,	/11/18	13:05:45	41.6
295 296	2021,	/11/18 /11/18	13:05:51 13:05:54	41.7 42 3
297	2021,	/11/18	13:05:57	41.8
298	2021,	/11/18	13:06:00	40.9

2992021/11/1813:06:0341.33002021/11/1813:06:0641.0

Free	q Weight : A		
Time Leve Max Leve SEL Leq	ė Weiğht : SLOW el Range : 30–90 dв : 53.7 – 2021/11/18 el Range : 30–90 : 70.6 : 41.1	13:26:00	
No.	s Date Time	(dB)	
SEL q Leq No 11111111111111111111111111111111111	<pre></pre>	(dB) = ((dB) = (dB) = ((dB) = ((dB) = ((dB) = ((dB) = ((dB) = ((dB) = (((dB)	
89 90	9 2021/11/18 13:15:32 0 2021/11/18 13:15:35	47.6	

91	2021/	11/18	13:15:38	44.5
92	2021/	$\frac{11}{18}$	13:15:41	43.6
95 94	2021/	11/18	13.15.44	42.2
95	2021/	$\frac{11}{11}$	13:15:50	41.1
96	2021/	11/18	13:15:53	40.1
97	2021/	$\frac{11}{18}$	13:15:56	45.2
90	2021/	11/18	13.15.59	42.0
100	2021/	$\frac{11}{11}$	13:16:05	37.7
101	2021/	11/18	13:16:08	36.4
102	2021/	(11/18)	13:16:11	35.9
103	2021/	11/18	13:10:14	30.4
105	2021/	$\frac{11}{11}$	13:16:20	38.0
106	2021/	11/18	13:16:23	38.8
107	2021/	11/18	13:16:26	38.2
108	2021/	$\frac{11}{18}$	13:16:29	37.5
110	2021/	$\frac{11}{11}$	13:16:32	38.7
111	2021/	11/18	13:16:38	38.3
112	2021/	11/18	13:16:41	37.3
113	2021/	$\frac{11}{18}$	13:16:44	37.0
115	2021/	11/18	13.16.50	37 3
116	2021/	$\frac{11}{11}$	13:16:53	36.5
117	2021/	11/18	13:16:56	38.0
118	2021/	$\frac{11}{18}$	13:16:59	36.9
120	2021/	$\frac{11}{11}$	$13 \cdot 17 \cdot 02$ $13 \cdot 17 \cdot 05$	37.5
121	2021/	$\frac{11}{11}$	13:17:08	38.7
122	2021/	11/18	13:17:11	40.7
123	2021/	$\frac{11}{18}$	13:17:14	38.9
124	2021/	11/18	13.17.20	39.0
126	2021/	11/18	13:17:23	41.2
127	2021/	11/18	13:17:26	40.3
128	2021/	$\frac{11}{18}$	13:17:29	37.4
130	2021/	11/18	13:17:32 $13\cdot17\cdot35$	39.4 38.1
131	2021/	$\frac{11}{11}$	13:17:38	37.1
132	2021/	11/18	13:17:41	36.2
133	2021/	(11/18)	13:17:44	36.0
134 135	2021/	11/18	13:17:47	36.3
136	2021/	$\frac{11}{11}$	13:17:53	35.9
137	2021/	11/18	13:17:56	36.0
138	2021/	11/18	13:17:59	37.0
139	2021/	$\frac{11}{18}$	13:18:02	3/.3
140	2021/	$\frac{11}{11}$	13:18:08	36.0
142	2021/	11/18	13:18:11	35.6
143	2021/	11/18	13:18:14	35.0
144	2021/	$\frac{11}{18}$	13:18:17	35.4
145	2021/	11/18	13.18.20	37 5
147	2021/	11/18	13:18:26	37.1
148	2021/	11/18	13:18:29	37.5
149	2021/	$\frac{11}{18}$	13:18:32	37.4
151	2021/	$\frac{11}{11}$	13:18:38	37.9
152	2021/	11/18	13:18:41	37.3
153	2021/	11/18	13:18:44	37.4
154	2021/	$\frac{11}{18}$	13:18:47	40.6
156	2021/	$\frac{11}{11}$	13:18:53	41.0
157	2021/	11/18	13:18:56	40.4
158	2021/	11/18	13:18:59	41.9
159	2021/	$\frac{11}{18}$	13:19:02	41.9
161	2021/	$\frac{11}{11}$	13:19:03	45.9
162	2021/	11/18	13:19:11	44.9
163	2021/	11/18	13:19:14	47.5
164	2021/	$\frac{11}{18}$	13:19:17	45.0
166	2021/	$\frac{11}{11}$	13:19:20	43.2
167	2021/	11/18	13:19:26	43.9
168	2021/	$\frac{11}{18}$	13:19:29	46.8
170 170	2021/	11/18/	13.10.32	42.3 41 5
171	2021/	11/18	13:19:38	41.2
172	2021/	11/18	13:19:41	41.4
173	2021/	$\frac{11}{18}$	13:19:44	42.1
175 L	2021/	11/18/	13.10.50	42.5 30 6
176	2021/	11/18	13:19:53	40.3
177	2021/	11/18	13:19:56	41.3
178	2021/	11/18	13:19:59	41.6
180 180	2021/	11/18	13.20:02	42.8
181	2021/	11/18	13:20:05	41.0
182	2021/	11/18	13:20:11	42.8
183	2021/	11/18	13:20:14	43.9
184	2021/	$\frac{11}{18}$	13:20:17	42.0
186 186	2021/	11/18/	13.20:20	43.0 43.2
187	2021/	11/18	13:20:26	41.5
188	2021/	11/18	13:20:29	40.9
189	2021/	$\frac{11}{18}$	13:20:32	42.0
191	2021/ 2021/	11/18/	13.20.35	40.3 38 6
192	2021/	11/18	13:20:41	38.8
193	2021/	11/18	13:20:44	39.2
194	2021/	11/18	13:20:47	41.1

195 196	2021	/11/18	13:20:50 13:20:53	41.1 41.9
197	2021	/11/18	13:20:56	40.5
198	2021	/11/18	13:20:59	40.7
200	2021	/11/18	13:21:05	41.6
202	2021	/11/18	13:21:11	39.3
203 204	2021	/11/18 /11/18	13:21:14 13:21:17	38.8 40.6
205	2021	/11/18	13:21:20	37.2
206	2021	/11/18	13:21:23	37.1 41.2
208	2021	/11/18	13:21:29	39.6
210	2021	/11/18	13:21:32	39.2
211 212	2021	/11/18	13:21:38 13·21·41	38.9 40.2
213	2021	/11/18	13:21:44	40.0
214 215	2021	/11/18	13:21:47	38.8 39.2
216	2021	/11/18	13:21:53	38.5
217	2021	/11/18	13:21:50	41.9
219 220	2021	/11/18	13:22:02	41.3 42.5
221	2021	/11/18	13:22:08	44.5
222	2021	/11/18	13:22:11	45.5 45.9
224	2021	/11/18	13:22:17	44.6
226	2021	/11/18	13:22:20	45.4
227	2021	/11/18	13:22:26	45.0 42.1
229	2021	/11/18	13:22:32	42.9
230 231	2021	/11/18	13:22:35	41.6 44.1
232	2021	/11/18	13:22:41	43.4
233	2021	/11/18	13:22:44	43.0
235	2021	/11/18	13:22:50	42.6
237	2021	/11/18	13:22:56	42.5
238	2021	/11/18	13:22:59	42.2 41.7
240	2021	/11/18	13:23:05	41.5
241 242	2021	/11/18	13:23:10	41.2
243 244	2021	/11/18	13:23:14 13:23:17	42.6
245	2021	/11/18	13:23:20	42.9
246 247	2021	/11/18	13:23:23	44.7
248 249	2021	/11/18	13:23:29	42.3
250	2021	/11/18	13:23:35	40.7
251	2021	/11/18	13:23:38	40.6
253	2021	/11/18	13:23:44	41.2
255	2021	/11/18	13:23:50	41.8
256 257	2021	/11/18	13:23:53	42.2
258	2021	/11/18	13:23:59	41.7
259	2021	/11/18	13:24:02	39.9 38.8
261	2021	/11/18	13:24:08 $13\cdot24\cdot11$	39.7 40.7
263	2021	/11/18	13:24:14	40.7
264 265	2021	/11/18	13:24:17 13:24:20	42.4 41.8
266	2021	/11/18	13:24:23	43.4
268	2021	/11/18	13:24:20	42.2
269 270	2021	/11/18	13:24:32 13:24:35	42.4
271	2021	/11/18	13:24:38	41.0
272	2021	/11/18	13:24:41	40.9
274 275	2021	/11/18	13:24:47 13:24:50	41.3
276	2021	/11/18	13:24:53	42.4
277	2021	/11/18	13:24:56	43.6
279	2021	/11/18	13:25:02	42.4
281	2021	/11/18	13:25:08	41.4
282 283	2021 2021	/11/18/	13:25:11 13:25:14	39.8 41.5
284	2021	/11/18	13:25:17	42.0
285 286	2021	/11/18	13:25:20	42.0 43.4
287 288	2021	/11/18	13:25:26 13:25:20	43.2 41 0
289	2021	/11/18	13:25:32	41.4
290 291	2021 2021	/11/18/	13:25:35 13:25:38	42.2 40.0
292	2021	/11/18	13:25:41	41.5
295	2021	/11/18	13:25:47	42.1
295 296	2021 2021	/11/18/	13:25:50 13:25:53	48.1 42.6
297	2021	/11/18	13:25:56	41.5
298	2021	/11/18	13:52:28	48.4

2992021/11/1813:26:0246.13002021/11/1813:26:0543.7

Freq Time Level	Weight : A Weight : SLOW Range : 30-90 P : 67 4 - 2021/11/	18 12.45.00	
Level SEL : Leq :	Range : 30-90 87.5 58.0	10 13.43.00	
No.s	Date Tim	le (dB)	
Maver :: s LSLq : s No.	B. 07.4 - 2021/11/ Range : 30-90 87.5 58.0 Date Tim 		
65 66 67	2021/11/18 13:34:4 2021/11/18 13:34:4 2021/11/18 13:34:4 2021/11/18 13:34:4	1 57.0 4 56.6 7 56.8	
68 69 70 71 72 73 74 75 76	2021/11/18 13:34:5 2021/11/18 13:34:5 2021/11/18 13:34:5 2021/11/18 13:34:5 2021/11/18 13:35:0 2021/11/18 13:35:0 2021/11/18 13:35:1 2021/11/18 13:35:1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
77 78 79 80 81 82 83 84 85	2021/11/18 13:35:1 2021/11/18 13:35:2 2021/11/18 13:35:2 2021/11/18 13:35:2 2021/11/18 13:35:3 2021/11/18 13:35:3 2021/11/18 13:35:3 2021/11/18 13:35:3	7 57.0 0 56.5 3 56.8 6 57.2 9 56.8 2 57.0 5 56.8 8 56.6 1 56.6	
86 87 88 89 90	2021/11/18 13:35:4 2021/11/18 13:35:4 2021/11/18 13:35:5 2021/11/18 13:35:5 2021/11/18 13:35:5 2021/11/18 13:35:5	4 57.5 7 58.4 0 57.8 3 56.9 6 56.6	

91	2021	/11/18	13:35:59	56.4
92 93	2021	/11/18	13:36:02	56.5
94	2021	/11/18	13:36:08	56.6
95	2021	/11/18	13:36:11 13:36:14	57.5
97	2021	/11/18	13:36:17	58.9
98	2021	/11/18	13:36:20	59.0
99 100	2021	/11/18	13:36:23	62.8 58.8
101	2021	/11/18	13:36:29	58.0
102	2021	/11/18	13:36:32	65.7
103	2021	/11/18	13:36:35	59.9
105	2021	/11/18	13:36:41	57.0
106	2021	/11/18	13:36:44	56.8
107	2021	/11/18	13:36:47	57.9
109	2021	/11/18	13:36:53	59.7
110	2021	/11/18	13:36:56	58.4
112	2021	/11/18	13:36:59	58.7 62.1
113	2021	/11/18	13:37:05	58.4
114	2021	/11/18	13:37:08	57.3
116	2021	/11/18	13:37:14	57.2
117	2021	/11/18	13:37:17	58.9
118	2021	/11/18	13:37:20 13:37:20	65.7
120	2021	/11/18	13:37:26	60.1
121	2021	/11/18	13:37:29	58.2
122	2021	/11/18	13:37:32	58.1 57.6
124	2021	/11/18	13:37:38	57.3
125	2021	/11/18	13:37:41	57.3
126	2021	/11/18	13:37:44 13·37·47	57.2
128	2021	/11/18	13:37:50	57.4
129	2021	/11/18	13:37:53	57.5
130	2021	/11/18	13:37:50	57.5 57.5
132	2021	/11/18	13:38:02	57.6
133	2021	/11/18	13:38:05	57.5
135	2021	/11/18	13:38:11	57.4
136	2021	/11/18	13:38:14	57.4
137	2021	$\frac{11}{18}$	13:38:17	57.8
139	2021	/11/18	13:38:23	58.5
140	2021	/11/18	13:38:26	58.4
141	2021	/11/18	13:38:29	57.5
143	2021	/11/18	13:38:35	57.7
144	2021	/11/18	13:38:38	57.6
145 146	2021	/11/18	13:38:41 13:38:44	57.4 57.3
147	2021	/11/18	13:38:47	57.4
148	2021	/11/18	13:38:50	57.4
149	2021	/11/18	13:38:56	57.4
151	2021	/11/18	13:38:59	57.2
152	2021	/11/18	13:39:02	57.2
154	2021	/11/18	13:39:08	57.1
155	2021	/11/18	13:39:11	57.2
156 157	2021	/11/18	13:39:14 13:39:17	57.2
158	2021	/11/18	13:39:20	57.3
159	2021	/11/18	13:39:23	57.4
161	2021	/11/18	13:39:20	57.4
162	2021	/11/18	13:39:32	57.4
163 164	2021	/11/18	13.39:35	57.5 57.2
165	2021	/11/18	13:39:41	57.3
166	2021	/11/18	13:39:44	57.2
168	2021	/11/18	13:39:4/	57.4 57.5
169	2021	/11/18	13:39:53	57.4
170	2021	/11/18	13:39:56	57.5
171 172	2021	/11/18	13:40:02	57.5
173	2021	/11/18	13:40:05	57.5
⊥/4 175	2021	/11/18	13·40:08	57.4
176	2021	/11/18	13:40:14	57.4
177	2021	/11/18	13:40:17	57.5
⊥/8 179	2021	/11/18	13:40:20 13:40:23	57.5 57.5
180	2021	/11/18	13:40:26	57.5
181	2021	/11/18	13:40:29	57.5
182 183	2021	/11/18	13:40:32	57.5 57.6
184	2021	/11/18	13:40:38	57.4
185	2021	/11/18	13:40:41	57.4
187	2021	/11/18	13:40:44	57.5
188	2021	/11/18	13:40:50	57.5
189 190	2021	/11/18	13:40:53	57.5 50 7
191	2021	/11/18	13:40:59	59.6
192	2021	/11/18	13:41:02	58.2
193 194	2021	/11/18	13:41:05	57.6 57 4
		., / _ 0		J/ . +

195 196	202 202	1/1 1/1	$\frac{1}{1}$	L8 L8	$13:41:11 \\ 13:41:14$	
197 198	202 202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:41:17 13:41:20	
199 200	202	1/1 1/1	$\frac{1}{1}$	L8 1 8	13:41:23 13:41:26	
201	202	$\frac{1}{1}$	$\frac{1}{1}$		13:41:29	
202	202	$\frac{1}{1}$	$\frac{1}{1/1}$		13:41:32	
204 205	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:41:38 13:41:41	
206 207	202	1/1 1/1	$\frac{1}{1}$	L8 18	13:41:44 13:41:47	
208	202	1/1	$\frac{1}{1}$		13:41:50	
210	202	$\frac{1}{1}$	$\frac{1}{1/1}$		13:41:56	
211 212	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:41:59	
213 214	202 202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:42:05 13:42:08	
215	202	1/1 1/1	$\frac{1}{1}$	18	13:42:11 $13\cdot42\cdot14$	
217	202	$\frac{1}{1}$	1/1		13:42:17	
218	202	1/1 $1/1$	$\frac{1}{1/1}$	L8 L8	13:42:20	
220 221	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:42:26 13:42:29	
222	202	1/1 1/1	$\frac{1}{1}$	L8	13:42:32 $13\cdot42\cdot35$	
224	202	$\frac{1}{1}/\frac{1}{1}$	1/1		13:42:38	
225	202	1/1 $1/1$	$\frac{1}{1/1}$	18	13:42:41	
227 228	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:42:47 13:42:50	
229 230	202	1/1 1/1	$\frac{1}{1}$	L8 1 8	13:42:53 13:42:56	
231	202	1/1	1/1		13:42:59	
232	202	$\frac{1}{1}$	$\frac{1}{1/1}$		13:43:02	
234 235	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:43:08	
236 237	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:43:14 13:43:17	
238	202	1/1 1/1	$\frac{1}{1}$	18	13:43:20	
240	202	1/1	1/1		13:43:26	
241 242	202	1/1 $1/1$	$\frac{1}{1/1}$	18 18	13:43:29	
243 244	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:43:35 13:43:38	
245 246	202	1/1 1/1	$\frac{1}{1}$	L8 1 8	13:43:41 $13\cdot43\cdot44$	
247	202	$\frac{1}{1}/\frac{1}{1}$	$\frac{1}{1}$		13:43:47	
240	202	$\frac{1}{1}$	$\frac{1}{1/1}$		13:43:53	
250 251	202	$\frac{1}{1}$	$\frac{1}{1}$	L8 L8	13:43:56	
252 253	202 202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:44:02 13:44:05	
254	202	1/1 1/1	$\frac{1}{1}$	L8	13:44:08	
256	202	1/1	1/1		13:44:14	
257	202	1/1 $1/1$	$\frac{1}{1/1}$	L8 L8	13:44:17	
259 260	202 202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:44:23 13:44:26	
261 262	202	1/1 1/1	$\frac{1}{1}$	L8 1 8	13:44:29 13:44:32	
263	202	$\frac{1}{1}$	$\frac{1}{1}$		13:44:35	
265	202	$\frac{1}{1}$	$\frac{1}{1/1}$		13:44:41	
266 267	202	$\frac{1}{1}$	$\frac{1}{1}$	L8 L8	13:44:44 13:44:47	
268 269	202 202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:44:50 13:44:53	
270 271	202	1/1 1/1	$\frac{1}{1}$	L8 1 8	13:44:56 $13\cdot44\cdot59$	
272	202	1/1	1/1		13:45:02	
275	202	1/1 $1/1$	$\frac{1}{1/1}$	10	13:45:05	
275 276	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:45:11 13:45:14	
277 278	202	$\frac{1}{1}$	$\frac{1}{1}$	L8 L8	13:45:17 13:45:20	
279	202	$\frac{1}{1}$	$\frac{1}{1}$		13:45:23	
281	202	$\frac{1}{1}$	1/1		13:45:29	
282	202	1/1 1/1	1/1 1/1		13:45:32 13:45:35	
284 285	202 202	1/1 1/1	$\frac{1}{1}$	18 18	13:45:38 13:45:41	
286 287	202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:45:44 13:45·47	
288	202	$\frac{1}{1}$	$\frac{1}{1}$		13:45:50	
290	202	1/1	1/1		13:45:56	
291 292	202	$\frac{1}{1}$	$\frac{1}{1}$	18 18	13:45:59 13:46:02	
293 294	202 202	1/1 1/1	$\frac{1}{1}$	L8 L8	13:46:05 13:46:08	
295	202	1/1 1/1	$\frac{1}{1}$	18	13:46:11 13:46:14	
297	202	$\frac{1}{1}$	$\frac{1}{1}$		13:46:17	
200	202	⊥ / ⊥	-/-	-0	10.20	

2992021/11/1813:46:2357.53002021/11/1813:46:2659.7

Freq Time Level Max d Level SEL	Weight : A Weight : SLOW Range : 30-90 B : 64.2 - 2021/11/18 Range : 30-90 78.3	3 14:01:38	
Leq : No.s	48.8 Date Time	(dB)	
No.s-12345678901123456789012234567890123345678901223456789012232222222222222222222222222222222222	Date Time 2021/11/18 13:58:46 2021/11/18 13:58:52 2021/11/18 13:58:58 2021/11/18 13:59:01 2021/11/18 13:59:10 2021/11/18 13:59:10 2021/11/18 13:59:13 2021/11/18 13:59:13 2021/11/18 13:59:13 2021/11/18 13:59:22 2021/11/18 13:59:31 2021/11/18 13:59:31 2021/11/18 13:59:31 2021/11/18 13:59:37 2021/11/18 13:59:40 2021/11/18 13:59:40 2021/11/18 13:59:40 2021/11/18 13:59:40 2021/11/18 13:59:40 2021/11/18 13:59:40 2021/11/18 13:59:55 2021/11/18 13:59:55 2021/11/18 13:59:55 2021/11/18 13:59:55 2021/11/18 13:59:55 2021/11/18 13:59:55 2021/11/18 14:00:01 2021/11/18 14:00:01 2021/11/18 14:00:10 2021/11/18 14:00:10 2021/11/18 14:00:10 2021/11/18 14:00:13 2021/11/18 14:00:22 2021/11/18 14:00:22 2021/11/18 14:00:31 2021/11/18 14:00:37 2021/11/18 14:00:40 2021/11/18 14:00:40 2021/11/18 14:00:40 2021/11/18 14:00:40 2021/11/18 14:00:43 2021/11/18 14:01:43 2021/11/18 14:02:44 2021/11/18 14:02:44	(dB) 47.5 48.7 46.7 45.9 46.6 44.4 44.2 43.9 45.6 44.4 44.2 43.9 45.1 46.1 45.9 47.1 46.1 45.9 47.7 47.7 47.7 47.3 44.9 43.9 44.9 43.9 45.2 46.6 47.0 846.3 44.1 44.1 44.6 44.4 44.1 44.6 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1	
90	2021/11/18 14:03:13	42.4	

91 92	2021/2	11/18 11/18	14:03:16 14:03:19	41.5 41.4
93	2021/2	11/18	14:03:22	42.2
95	2021/	11/18	14:03:23	44.6
96 97	2021/1	11/18 11/18	14:03:31 14:03:34	47.1 48.4
98	2021/2	11/18	14:03:37	45.7
99 100	2021/	11/18 11/18	14:03:40	43.4
101 102	2021/2	11/18 11/18	14:03:46 14:03:49	44.0 43.9
103	2021/	11/18	14:03:52	45.1
104	2021/	11/18 11/18	14:03:55	45.5
106	2021/2	$\frac{11}{18}$	14:04:01 14:04:04	45.8
108	2021/	11/18	14:04:07	47.5
109 110	2021/2	11/18 11/18	14:04:10 14:04:13	47.4
111	2021/2	11/18	14:04:16	45.1
113	2021/	11/18 $11/18$	14:04:19	47.1
114 115	2021/2	11/18 11/18	14:04:25 14:04:28	49.9 48.0
116	2021/	11/18	14:04:31	47.1
118	2021/1	11/18 11/18	14:04:34	46.3
119 120	2021/2	$\frac{11}{18}$	14:04:40 14:04:43	45.7
121	2021/	11/18	14:04:46	45.4
122	2021/	11/18 11/18	14:04:49	44.4
124 125	2021/2	$\frac{11}{18}$	14:04:55 14:04:58	47.8
126	2021/	11/18	14:05:01	46.9
127 128	2021/1	11/18 11/18	14:05:04 14:05:07	47.2
129	2021/	11/18	14:05:10	46.4
131	2021/1	11/18 11/18	14:05:15	43.0
132 133	2021/2	11/18	14:05:19 14:05:22	42.3 43.1
134	2021/	11/18	14:05:25	43.0
135	2021/	11/18 11/18	14:05:28	42.7
137 138	2021/2	$\frac{11}{18}$	14:05:34 14:05:37	43.7
139	2021/	11/18	14:05:40	43.6
140 141	2021/1	11/18 $11/18$	14:05:43 14:05:46	43.0 42.7
142	2021/2	$\frac{11}{18}$	14:05:49	44.4
144	2021/	11/18 11/18	14:05:55	44.7
145 146	2021/1	11/18 11/18	14:05:58 14:06:01	48.2
147	2021/2	11/18	14:06:04	46.4
148	2021/	11/18 11/18	14:06:07	44.7
150 151	2021/2	11/18 11/18	14:06:13 14:06:16	42.2
152	2021/2	11/18	14:06:19	42.2
154	2021/1	11/18 11/18	14:06:22	42.7
155 156	2021/2	$\frac{11}{18}$	14:06:28 14:06:31	43.9 43.6
157	2021/	11/18	14:06:34	45.8
158 159	2021/. 2021/1	11/18 11/18	14:06:37 14:06:40	45.6 45.0
160 161	2021/2	$\frac{11}{18}$	14:06:43 14:06:46	44.4
162	2021/	11/18	14:06:49	44.4
163 164	2021/1	11/18 11/18	14:06:52 14:06:55	44.4
165 166	2021/2	$\frac{11}{18}$	14:06:58	44.2
167	2021/	11/18 $11/18$	14:07:01	45.7
168 169	2021/2	11/18 11/18	14:07:07 14:07:10	47.4 49.1
170	2021/2	11/18	14:07:13	49.5
172	2021/1	11/18 11/18	14:07:16	49.4
173 174	2021/2	$\frac{11}{18}$	14:07:22 14:07:25	48.9 48.6
175	2021/	11/18	14:07:28	49.9
175 177	2021/2	11/18	14:07:31 14:07:34	49.0 48.8
178 179	2021/	11/18	14:07:37 14:07:40	47.2
180	2021/	$\frac{11}{18}$	14:07:43	47.6
181 182	2021/1 2021/1	L1/18 11/18	⊥4:07:46 14:07:49	45.2 46.7
183	2021/	11/18	14:07:52	45.4
185 185	2021/1	11/18	14:07:55	45.5 44.2
186 187	2021/2	11/18 11/18	14:08:01 14:08:04	45.0 43.8
188	2021/	11/18	14:08:07	46.3
189 190	2021/1	11/18	14:08:10 14:08:13	45.9 44.9
191 192	2021/2	11/18	14:08:16 14:08:19	44.3 48.2
193	2021/1	11/18	14:08:22	51.4
194	2021/2	11/18	14:08:25	47.6

137 2021/11/18 14:08:31 198 2021/11/18 14:08:34 198 2021/11/18 14:08:37 199 2021/11/18 14:08:37 199 2021/11/18 14:08:37 200 2021/11/18 14:08:43 201 2021/11/18 14:08:44 202 2021/11/18 14:08:45 203 2021/11/18 14:08:52 204 2021/11/18 14:08:52 204 2021/11/18 14:08:52 204 2021/11/18 14:09:52 205 2021/11/18 14:09:01 207 2021/11/18 14:09:07 208 2021/11/18 14:09:07 209 2021/11/18 14:09:07 209 2021/11/18 14:09:13 211 2021/11/18 14:09:13 212 2021/11/18 14:09:22 214 2021/11/18 14:09:23 215 2021/11/18 14:09:34 216 2021/11/18 14:09:43 221 2021/11/18 14:09:49	49.7 49.7 44.6 44.2 43.2 45.2 45.2 44.7 45.3 45.2 45.2 44.7 45.3 45.4 45.3 45.4 45.3 45.4 45.3 45.4 45.3 45.4 45.3 45.4 45.4
198 2021/11/18 14:08:37 199 2021/11/18 14:08:40 200 2021/11/18 14:08:43 201 2021/11/18 14:08:44 202 2021/11/18 14:08:45 202 2021/11/18 14:08:52 204 2021/11/18 14:08:52 204 2021/11/18 14:08:52 204 2021/11/18 14:08:55 205 2021/11/18 14:09:01 207 2021/11/18 14:09:01 208 2021/11/18 14:09:01 209 2021/11/18 14:09:01 201 2021/11/18 14:09:10 210 2021/11/18 14:09:13 211 2021/11/18 14:09:19 213 2021/11/18 14:09:25 215 2021/11/18 14:09:28 216 2021/11/18 14:09:31 217 2021/11/18 14:09:37 219 2021/11/18 14:09:40 220 2021/11/18	49.7 44.3 44.2 43.1 45.2 45.2 45.2 45.2 45.2 45.2 45.2 45.2
200 2021/11/18 14:08:43 201 2021/11/18 14:08:43 201 2021/11/18 14:08:49 203 2021/11/18 14:08:52 204 2021/11/18 14:08:55 205 2021/11/18 14:08:55 205 2021/11/18 14:09:01 207 2021/11/18 14:09:04 208 2021/11/18 14:09:04 209 2021/11/18 14:09:07 209 2021/11/18 14:09:01 210 2021/11/18 14:09:10 210 2021/11/18 14:09:13 211 2021/11/18 14:09:14 202 2021/11/18 14:09:25 213 2021/11/18 14:09:26 214 2021/11/18 14:09:31 217 2021/11/18 14:09:31 217 2021/11/18 14:09:43 211 2021/11/18 14:09:40 222 2021/11/18 14:09:55 224 2021/11/18	44.6 45.3 44.2 43.1 45.2 45.2 45.2 45.2 45.2 44.0 42.7 43.8 45.2 44.0 42.7 43.8 45.1 45.3 47.3 45.1 46.4 47.8 46.8 46.7 46.8 47.0 49.4 46.2 48.0 49.4
201 2021/11/18 14:08:46 202 2021/11/18 14:08:49 203 2021/11/18 14:08:55 204 2021/11/18 14:08:55 205 2021/11/18 14:08:55 206 2021/11/18 14:09:55 207 2021/11/18 14:09:01 207 2021/11/18 14:09:01 208 2021/11/18 14:09:01 209 2021/11/18 14:09:01 210 2021/11/18 14:09:10 211 2021/11/18 14:09:10 212 2021/11/18 14:09:10 213 2021/11/18 14:09:19 213 2021/11/18 14:09:22 214 2021/11/18 14:09:23 215 2021/11/18 14:09:28 216 2021/11/18 14:09:37 219 2021/11/18 14:09:43 221 2021/11/18 14:09:43 221 2021/11/18 14:09:55 222 2021/11/18 14:09:58 226 2021/11/18 14:10:010 2	45.3 44.2 43.2 45.2 45.2 45.2 45.2 44.0 42.7 45.3 45.2 44.0 42.7 45.3 45.1 45.3 47.3 45.1 47.8 45.1 47.8 46.6 45.8 46.7 46.8 47.2 48.0 49.4
203 2021/11/18 14:08:52 204 2021/11/18 14:08:55 205 2021/11/18 14:08:58 206 2021/11/18 14:09:01 207 2021/11/18 14:09:01 208 2021/11/18 14:09:07 209 2021/11/18 14:09:10 210 2021/11/18 14:09:13 211 2021/11/18 14:09:13 212 2021/11/18 14:09:19 213 2021/11/18 14:09:22 214 2021/11/18 14:09:22 214 2021/11/18 14:09:23 201/11/18 14:09:24 2021/11/18 217 2021/11/18 14:09:34 218 2021/11/18 14:09:43 217 2021/11/18 14:09:43 210 2021/11/18 14:09:43 221 2021/11/18 14:09:55 224 2021/11/18 14:09:55 225 2021/11/18 14:10:01 226 2021/11/18 14:10:01 227 2021/11/18 14:10:01	43.1 45.2 45.8 45.2 44.2 44.2 44.2 44.2 44.7 43.8 45.3 45.3 45.3 45.3 45.1 46.4 47.8 46.6 45.8 46.6 45.8 47.8 46.6 45.8 47.8 46.2 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0
204 2021/11/18 14:08:55 205 2021/11/18 14:08:55 206 2021/11/18 14:09:01 207 2021/11/18 14:09:04 208 2021/11/18 14:09:04 208 2021/11/18 14:09:07 209 2021/11/18 14:09:10 210 2021/11/18 14:09:13 211 2021/11/18 14:09:14 212 2021/11/18 14:09:16 212 2021/11/18 14:09:22 213 2021/11/18 14:09:22 214 2021/11/18 14:09:22 215 2021/11/18 14:09:23 216 2021/11/18 14:09:31 217 2021/11/18 14:09:34 218 2021/11/18 14:09:40 220 2021/11/18 14:09:40 221 2021/11/18 14:09:55 222 2021/11/18 14:09:55 225 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:010 2	43.2 45.2 45.8 45.2 44.2 44.2 44.2 42.7 43.8 45.3 45.3 45.3 45.1 46.4 47.9 47.8 46.6 45.7 46.8 47.2 47.8 46.6 45.2 48.0 49.2 48.0 49.4
206 2021/11/18 14:09:01 207 2021/11/18 14:09:04 208 2021/11/18 14:09:07 209 2021/11/18 14:09:10 210 2021/11/18 14:09:13 211 2021/11/18 14:09:13 211 2021/11/18 14:09:19 213 2021/11/18 14:09:25 214 2021/11/18 14:09:25 215 2021/11/18 14:09:28 216 2021/11/18 14:09:31 217 2021/11/18 14:09:34 218 2021/11/18 14:09:34 219 2021/11/18 14:09:40 220 2021/11/18 14:09:40 221 2021/11/18 14:09:40 222 2021/11/18 14:09:52 224 2021/11/18 14:09:55 225 2021/11/18 14:10:01 226 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18	45.2 45.8 45.2 44.0 42.7 43.8 45.3 47.8 45.3 45.1 46.4 47.9 47.8 46.6 45.7 46.8 46.6 45.7 46.8 47.2 48.0 49.4
207 2021/11/18 14:09:04 208 2021/11/18 14:09:07 209 2021/11/18 14:09:10 210 2021/11/18 14:09:10 211 2021/11/18 14:09:13 211 2021/11/18 14:09:19 212 2021/11/18 14:09:29 214 2021/11/18 14:09:22 214 2021/11/18 14:09:25 215 2021/11/18 14:09:23 216 2021/11/18 14:09:31 217 2021/11/18 14:09:34 218 2021/11/18 14:09:40 220 2021/11/18 14:09:40 220 2021/11/18 14:09:40 221 2021/11/18 14:09:40 222 2021/11/18 14:09:40 223 2021/11/18 14:09:55 224 2021/11/18 14:09:55 225 2021/11/18 14:10:01 226 2021/11/18 14:10:07 229 2021/11/18 14:10:10 230 2021/11/18 14:10:10	45.8 45.2 44.2 44.0 42.7 43.8 45.3 47.3 45.8 45.1 46.4 47.4 47.8 46.8 46.6 45.7 46.8 47.2 46.8 47.2 48.0 49.4
2092021/11/1814:09:102102021/11/1814:09:132112021/11/1814:09:162122021/11/1814:09:192132021/11/1814:09:222142021/11/1814:09:222142021/11/1814:09:232152021/11/1814:09:312172021/11/1814:09:342182021/11/1814:09:372192021/11/1814:09:432212021/11/1814:09:432212021/11/1814:09:432222021/11/1814:09:552242021/11/1814:09:582262021/11/1814:10:012272021/11/1814:10:012282021/11/1814:10:012292021/11/1814:10:102302021/11/1814:10:102312021/11/1814:10:162322021/11/1814:10:162322021/11/1814:10:162322021/11/1814:10:16	44.2 44.0 42.7 43.8 45.3 47.3 45.8 45.1 46.8 46.8 46.8 46.8 45.7 46.8 47.2 46.8 47.2 48.0 49.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.0 42.7 43.8 45.3 47.3 45.8 45.1 46.4 47.4 47.9 47.8 46.8 46.8 45.7 46.8 45.7 46.8 47.2 48.0 49.4
212 2021/11/18 14:09:19 213 2021/11/18 14:09:22 214 2021/11/18 14:09:25 215 2021/11/18 14:09:28 216 2021/11/18 14:09:31 217 2021/11/18 14:09:34 218 2021/11/18 14:09:37 219 2021/11/18 14:09:40 220 2021/11/18 14:09:40 221 2021/11/18 14:09:43 221 2021/11/18 14:09:52 224 2021/11/18 14:09:55 225 2021/11/18 14:09:55 226 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:10 230 2021/11/18 14:10:10 230 2021/11/18 14:10:10 231 2021/11/18 14:10:16 232 2021/11/18 14:10:16 232 2021/11/18 14:10:16	43.8 45.3 45.8 45.1 46.4 47.4 47.8 46.8 46.6 45.7 46.8 47.2 48.0 49.4
214 2021/11/18 14:09:25 215 2021/11/18 14:09:28 216 2021/11/18 14:09:31 217 2021/11/18 14:09:34 218 2021/11/18 14:09:34 219 2021/11/18 14:09:40 220 2021/11/18 14:09:40 221 2021/11/18 14:09:40 222 2021/11/18 14:09:49 223 2021/11/18 14:09:52 224 2021/11/18 14:09:55 225 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:01 229 2021/11/18 14:10:01 220 2021/11/18 14:10:10 230 2021/11/18 14:10:10 230 2021/11/18 14:10:13 331 2021/11/18 14:10:16 232 2021/11/18 14:10:16 232 2021/11/18 14:10:16	47.3 45.8 45.1 46.4 47.9 47.8 46.8 46.8 46.8 45.7 46.8 47.2 46.8 47.2 48.0 49.4
215 2021/11/18 14:09:28 216 2021/11/18 14:09:31 217 2021/11/18 14:09:34 218 2021/11/18 14:09:37 219 2021/11/18 14:09:40 220 2021/11/18 14:09:43 221 2021/11/18 14:09:43 222 2021/11/18 14:09:49 223 2021/11/18 14:09:52 224 2021/11/18 14:09:58 226 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:01 229 2021/11/18 14:10:10 230 2021/11/18 14:10:10 231 2021/11/18 14:10:16 232 2021/11/18 14:10:16 232 2021/11/18 14:10:16	45.8 45.1 46.4 47.9 47.8 46.8 46.6 45.7 46.8 47.2 48.0 49.4
217 2021/11/18 14:09:34 218 2021/11/18 14:09:37 219 2021/11/18 14:09:40 220 2021/11/18 14:09:43 221 2021/11/18 14:09:43 222 2021/11/18 14:09:52 223 2021/11/18 14:09:55 224 2021/11/18 14:10:58 225 2021/11/18 14:10:01 227 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:01 229 2021/11/18 14:10:01 220 2021/11/18 14:10:10 230 2021/11/18 14:10:10 230 2021/11/18 14:10:10 231 2021/11/18 14:10:16 232 2021/11/18 14:10:10	46.4 47.4 47.9 47.8 46.8 46.6 45.7 46.8 47.2 48.0 49.4
218 2021/11/18 14:09:37 219 2021/11/18 14:09:40 220 2021/11/18 14:09:43 221 2021/11/18 14:09:46 222 2021/11/18 14:09:52 224 2021/11/18 14:09:55 225 2021/11/18 14:109:55 226 2021/11/18 14:10:01 227 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:01 230 2021/11/18 14:10:10 230 2021/11/18 14:10:10 230 2021/11/18 14:10:10 230 2021/11/18 14:10:10 231 2021/11/18 14:10:16 232 2021/11/18 14:10:19	47.4 47.9 47.8 46.8 46.6 45.7 46.8 47.2 48.0 49.4
220 2021/11/18 14:09:43 221 2021/11/18 14:09:46 222 2021/11/18 14:09:46 223 2021/11/18 14:09:52 224 2021/11/18 14:09:55 225 2021/11/18 14:109:58 226 2021/11/18 14:10:01 227 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:01 229 2021/11/18 14:10:10 230 2021/11/18 14:10:10 231 2021/11/18 14:10:16 232 2021/11/18 14:10:16 232 2021/11/18 14:10:16	47.8 46.8 46.6 45.7 46.8 47.2 48.0 49 4
221 2021/11/18 14:09:46 222 2021/11/18 14:09:49 223 2021/11/18 14:09:55 224 2021/11/18 14:09:55 225 2021/11/18 14:09:58 226 2021/11/18 14:10:01 227 2021/11/18 14:10:01 228 2021/11/18 14:10:07 229 2021/11/18 14:10:10 230 2021/11/18 14:10:10 231 2021/11/18 14:10:16 232 2021/11/18 14:10:16	46.8 46.6 45.7 46.8 47.2 48.0 49 4
223 2021/11/18 14:09:52 224 2021/11/18 14:09:55 225 2021/11/18 14:09:58 226 2021/11/18 14:10:01 227 2021/11/18 14:10:04 228 2021/11/18 14:10:07 229 2021/11/18 14:10:10 230 2021/11/18 14:10:13 231 2021/11/18 14:10:16 232 2021/11/18 14:10:19	45.7 46.8 47.2 48.0 49.4
224 2021/11/18 14:09:55 225 2021/11/18 14:10:58 226 2021/11/18 14:10:01 227 2021/11/18 14:10:04 228 2021/11/18 14:10:07 229 2021/11/18 14:10:10 230 2021/11/18 14:10:10 231 2021/11/18 14:10:16 232 2021/11/18 14:10:19	46.8 47.2 48.0 49.4
226 2021/11/18 14:10:01 227 2021/11/18 14:10:04 228 2021/11/18 14:10:07 229 2021/11/18 14:10:10 230 2021/11/18 14:10:13 231 2021/11/18 14:10:16 232 2021/11/18 14:10:19	48.0 49.4
228 2021/11/18 14:10:04 228 2021/11/18 14:10:07 229 2021/11/18 14:10:10 230 2021/11/18 14:10:13 231 2021/11/18 14:10:16 232 2021/11/18 14:10:19	49 4
229 2021/11/18 14:10:10 230 2021/11/18 14:10:13 231 2021/11/18 14:10:16 232 2021/11/18 14:10:19	48.0
231 2021/11/18 14:10:16 232 2021/11/18 14:10:19	47.5
232 2021/11/18 14:10:19	47.7
233 2021/11/18 14.10.22	47.3
234 2021/11/18 14:10:25	46.3
235 2021/11/18 14:10:28 236 2021/11/18 14:10:31	46.8 44 7
237 2021/11/18 14:10:34	45.3
238 2021/11/18 14:10:37 239 2021/11/18 14:10:40	45.3
240 2021/11/18 14:10:43	44.0
241 2021/11/18 14:10:46 242 2021/11/18 14:10:49	44.1
243 2021/11/18 14:10:52	43.1
244 2021/11/18 14:10:33 245 2021/11/18 14:10:58	45.7
246 2021/11/18 14:11:01 247 2021/11/18 14:11:04	45.9
248 2021/11/18 14:11:07	50.8
249 2021/11/18 14:11:10 250 2021/11/18 14:11:13	54.1 51 9
251 2021/11/18 14:11:16	52.7
252 2021/11/18 14:11:19 253 2021/11/18 14:11:22	54.3
254 2021/11/18 14:11:25	54.7
256 2021/11/18 14:11:28 256 2021/11/18 14:11:31	54.7
257 2021/11/18 14:11:34 258 2021/11/18 14:11:37	49.4
259 2021/11/18 14:11:40	48.8
260 2021/11/18 14:11:43 261 2021/11/18 14:11:46	49.3
262 2021/11/18 14:11:49	53.2
263 2021/11/18 14:11:52 264 2021/11/18 14:11:55	47.1 47.1
265 2021/11/18 14:11:58	46.6
266 2021/11/18 14:12:01 267 2021/11/18 14:12:04	54.3
268 2021/11/18 14:12:07	54.8
270 2021/11/18 14:12:10 270 2021/11/18 14:12:13	54.2
271 2021/11/18 14:12:16	49.7
· · · · · · · · · · · · · · · · · · ·	47.8
273 2021/11/18 14:12:19 273 2021/11/18 14:12:22	51.4
2/2 2/2/1/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28	51.9
2/2 2/2/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31	51.9
2/2 2/2/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:34 277 2021/11/18 14:12:34 278 2021/11/18 14:12:37	51.9 50.7 53.7 47.4
2/2 2/2/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:34 278 2021/11/18 14:12:37 279 2021/11/18 14:12:40	51.9 50.7 53.7 47.4 54.5
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:37 278 2021/11/18 14:12:37 279 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:46	51.9 50.7 53.7 47.4 54.5 53.5 56.4
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:37 278 2021/11/18 14:12:37 279 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:46 282 2021/11/18 14:12:52	51.9 50.7 53.7 47.4 54.5 53.5 56.4 52.6
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:34 278 2021/11/18 14:12:34 279 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:43 282 2021/11/18 14:12:49 283 2021/11/18 14:12:52 284 2021/11/18 14:12:55	51.9 50.7 53.7 47.4 54.5 53.5 56.4 52.6 53.1 49.4
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:31 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:34 278 2021/11/18 14:12:37 279 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:46 282 2021/11/18 14:12:52 284 2021/11/18 14:12:55 285 2021/11/18 14:12:58 286 2021/11/18 14:12:58	51.9 50.7 53.7 47.4 54.5 53.5 56.4 52.6 53.1 49.4 47.7 51
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:34 278 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:43 282 2021/11/18 14:12:42 283 2021/11/18 14:12:52 284 2021/11/18 14:12:55 285 2021/11/18 14:12:55 286 2021/11/18 14:12:58 286 2021/11/18 14:13:01 287 2021/11/18 14:13:01	51.9 50.7 53.7 47.4 54.5 53.5 56.4 52.6 53.1 49.4 47.7 51.2 51.8
2/2 2/2/1/1/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:31 278 2021/11/18 14:12:37 279 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:43 282 2021/11/18 14:12:45 284 2021/11/18 14:12:52 284 2021/11/18 14:12:58 286 2021/11/18 14:13:01 287 2021/11/18 14:13:01 287 2021/11/18 14:13:01 288 2021/11/18 14:13:01 288 2021/11/18 14:13:07 289 2021/11/18 14:13:07 289 2021/11/18 14:13:07	51.9 50.7 53.7 47.4 54.5 56.4 52.6 53.1 49.4 47.7 51.2 51.8 47.8 48.8 47.6
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:23 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:34 278 2021/11/18 14:12:43 280 2021/11/18 14:12:43 281 2021/11/18 14:12:49 282 2021/11/18 14:12:52 284 2021/11/18 14:12:55 285 2021/11/18 14:12:58 286 2021/11/18 14:13:01 287 2021/11/18 14:13:04 288 2021/11/18 14:13:04 288 2021/11/18 14:13:10 289 2021/11/18 14:13:10 289 2021/11/18 14:13:10 290 2021/11/18 14:13:13	51.9 50.7 53.7 47.4 54.5 53.5 56.4 52.1 49.4 47.7 51.2 51.8 48.4 47.6 44.2
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:34 278 2021/11/18 14:12:34 279 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:43 282 2021/11/18 14:12:49 283 2021/11/18 14:12:55 284 2021/11/18 14:12:55 285 2021/11/18 14:12:55 286 2021/11/18 14:13:01 287 2021/11/18 14:13:01 287 2021/11/18 14:13:01 288 2021/11/18 14:13:01 289 2021/11/18 14:13:10 290 2021/11/18 14:13:13 291 2021/11/18 14:13:16 292 2021/11/18 14:13:16	51.9 50.7 53.7 47.4 54.5 53.5 56.6 53.1 49.4 47.7 51.2 51.8 48.8 47.6 44.2 44.2 42.3 44.3
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:28 276 2021/11/18 14:12:31 277 2021/11/18 14:12:34 277 2021/11/18 14:12:34 278 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:44 282 2021/11/18 14:12:45 283 2021/11/18 14:12:52 284 2021/11/18 14:12:55 285 2021/11/18 14:13:01 287 2021/11/18 14:13:01 288 2021/11/18 14:13:01 287 2021/11/18 14:13:01 288 2021/11/18 14:13:10 290 2021/11/18 14:13:13 291 2021/11/18 14:13:13 291 2021/11/18 14:13:16 292 2021/11/18 14:13:16 292 2021/11/18 14:13:22	51.9 50.7 47.4 54.5 53.5 52.6 53.1 49.4 47.7 51.8 47.6 44.2 42.3 44.3 44.3 43.5
2722021/11/1814:12:192732021/11/1814:12:222742021/11/1814:12:252752021/11/1814:12:312772021/11/1814:12:312772021/11/1814:12:312782021/11/1814:12:372792021/11/1814:12:402802021/11/1814:12:432812021/11/1814:12:432812021/11/1814:12:462822021/11/1814:12:522842021/11/1814:12:582862021/11/1814:13:012872021/11/1814:13:012872021/11/1814:13:012872021/11/1814:13:102902021/11/1814:13:132912021/11/1814:13:132912021/11/1814:13:122942021/11/1814:13:222942021/11/1814:13:28	51.9 50.7 47.4 54.5 56.4 52.6 53.1 49.4 47.2 51.8 48.8 47.2 51.8 48.3 44.3 44.3 44.3 41.5 51.8 42.3 42.3 42.3 42.3 42.4 43.5 42.5 42.5 42.5 42.6 4
2/2 2021/11/18 14:12:19 273 2021/11/18 14:12:22 274 2021/11/18 14:12:25 275 2021/11/18 14:12:23 276 2021/11/18 14:12:31 277 2021/11/18 14:12:31 277 2021/11/18 14:12:31 278 2021/11/18 14:12:34 278 2021/11/18 14:12:40 280 2021/11/18 14:12:43 281 2021/11/18 14:12:43 281 2021/11/18 14:12:49 283 2021/11/18 14:12:55 284 2021/11/18 14:12:55 285 2021/11/18 14:13:01 287 2021/11/18 14:13:01 287 2021/11/18 14:13:01 288 2021/11/18 14:13:10 290 2021/11/18 14:13:13 291 2021/11/18 14:13:13 292 2021/11/18 14:13:25 294 2021/11/18 14:13:28 295 2021/11/18 14:13:24	51.97 50.7 47.4 54.5 53.5 52.6 53.1 49.4 47.2 51.8 48.8 47.2 51.8 42.3 44.3 44.3 44.3 44.5 41.5 41.5 42.2 42.2

2992021/11/1814:13:4045.83002021/11/1814:13:4344.8

Freq	Weight : A		
Level Max d Level SEL : Leq :	Range : 30-90 IB : 87.0 - 2021/11/18 Range : 30-90 99.5 70.0	14:27:50	
No.s	Date Time	(dB)	
Lever:: SEeq No.s 1234567890112314567 12345678901122222222222222222222222222222222222	Bate Time 2021/11/18 14:22:16 2021/11/18 14:22:19 2021/11/18 14:22:25 2021/11/18 2021/11/18 14:22:31 2021/11/18 2021/11/18 14:22:34 2021/11/18 2021/11/18 14:22:40 2021/11/18 2021/11/18 14:22:40 2021/11/18 2021/11/18 14:22:40 2021/11/18 2021/11/18 14:22:40 2021/11/18 2021/11/18 14:22:52 2021/11/18 2021/11/18 2021/11/18 14:23:10 2021/11/18 2021/11/18 14:23:10 2021/11/18 2021/11/18 14:23:10 2021/11/18 2021/11/18 14:23:13 2021/11/18 14:23:31 2021/11/18 2021/11/18 14:24:40 <td>(dB) 71.5 62.0 68.0 68.1 62.7 54.3 52.2 56.9 60.9 58.7 59.1 69.4 67.5 69.2 72.4 73.9 69.4 67.5 69.2 72.4 73.9 69.4 67.5 69.2 72.4 73.9 67.5 69.2 72.7 72.7 72.7 72.7 73.9 873.4 74.4 68.0 65.2 72.7 72.7 73.9 73.4 74.4 68.6 71.1 67.5 68.7 72.7 72.5 73.9 73.4 74.4 68.6 71.5 68.7 72.7 72.5 72.5 72.5 72.5 72.5 72.5 72</td> <td></td>	(dB) 71.5 62.0 68.0 68.1 62.7 54.3 52.2 56.9 60.9 58.7 59.1 69.4 67.5 69.2 72.4 73.9 69.4 67.5 69.2 72.4 73.9 69.4 67.5 69.2 72.4 73.9 67.5 69.2 72.7 72.7 72.7 72.7 73.9 873.4 74.4 68.0 65.2 72.7 72.7 73.9 73.4 74.4 68.6 71.1 67.5 68.7 72.7 72.5 73.9 73.4 74.4 68.6 71.5 68.7 72.7 72.5 72.5 72.5 72.5 72.5 72.5 72	
85 86	2021/11/18 14:26:28 2021/11/18 14:26:31	68.3 63.6	
87 88 89	2021/11/18 14:26:34 2021/11/18 14:26:37 2021/11/18 14:26:40	64.3 66.0 58.0	
90	2021/11/18 14:26:43	52.4	

91	2021	/11/18	14:26:46	48.9
93	2021,	/11/18	14:26:52	73.0
94	2021	/11/18	14:26:55	65.0
95 96	2021	/11/18	14:27:01	65.3
97	2021	/11/18	14:27:04	58.5
98 99	2021	/11/18	14:27:07	61.4
100	2021	/11/18	14:27:13	75.8
101	2021,	/11/18	14:27:16	68.2
103	2021,	/11/18	14:27:22	70.3
104	2021, 2021	/11/18	14:27:25	70.1 71.2
106	2021,	/11/18	14:27:31	68.9
107	2021,	/11/18	14:27:34	68.9 72 5
109	2021,	/11/18	14:27:40	65.2
110	2021,	/11/18	14:27:43 14:27:46	72.7
112	2021,	/11/18	14:27:49	84.5*
113	2021	/11/18	14:27:52 $14\cdot27\cdot55$	77.4*
115	2021	/11/18	14:27:58	70.3
116	2021	/11/18	14:28:01	68.2
118	2021	/11/18	14:28:04	68.4
119	2021	/11/18	14:28:10	68.0
120	2021	/11/18	14:28:13	63.2
122	2021,	/11/18	14:28:19	66.3
123	2021	/11/18	14:28:22	73.8 69.6
125	2021,	/11/18	14:28:28	69.1
126	2021, 2021	/11/18	14:28:31	68.1 68.2
128	2021,	/11/18	14:28:37	66.1
129 130	2021, 2021	/11/18	14:28:40 14·28·43	64.7 68.6
131	2021,	/11/18	14:28:46	70.7
132	2021,	/11/18	14:28:49	69.8 62.8
134	2021,	/11/18	14:28:55	63.1
135	2021	/11/18	14:28:58	59.6
137	2021	/11/18	14:29:01	65.7
138	2021	/11/18	14:29:07	62.5
140	2021	/11/18	14:29:10	60.4
141	2021	/11/18	14:29:16	57.9
142	2021	/11/18	14:29:19	59.9
144	2021	/11/18	14:29:25	60.3
145	2021	/11/18	14:29:28	62.5
147	2021	/11/18	14:29:34	58.6
148 149	2021,	/11/18	14:29:37	62.0
150	2021	/11/18	14:29:43	73.3
151	2021	/11/18	14:29:46	69.7
153	2021	/11/18	14:29:52	69.7
155	2021	/11/18	14:29:55	67.6
156	2021,	/11/18	14:30:01	69.8
157	2021,	/11/18	14:30:04	69.7 69.1
159	2021,	/11/18	14:30:10	68.0
160 161	2021,	/11/18	14:30:13	66.0
162	2021,	/11/18	14:30:19	62.4
163 164	2021, 2021	/11/18	14:30:22	59.8 59.3
165	2021,	/11/18	14:30:28	60.8
166 167	2021, 2021	/11/18	14:30:31	61.7 64.9
168	2021,	/11/18	14:30:37	66.9
169 170	2021, 2021	/11/18	14:30:40 14:30:43	62.8
171	2021,	/11/18	14:30:46	63.3
172 173	2021,	/11/18	14:30:49 $14\cdot30\cdot52$	57.7 52 1
174	2021,	/11/18	14:30:55	52.3
175	2021,	/11/18	14:30:58 $14\cdot31\cdot01$	52.8
177	2021,	/11/18	14:31:04	58.9
178 179	2021,	/11/18	14:31:07 $14\cdot31\cdot10$	51.7
180	2021,	/11/18	14:31:13	50.5
181 182	2021,	/11/18	14:31:16 $14\cdot31\cdot10$	49.8 10 9
183	2021,	/11/18	14:31:22	49.8
184 195	2021	/11/18	14:31:25	51.1
186	2021	/11/18	14:31:20	50.7
187	2021,	/11/18	14:31:34	55.6
189 189	2021,	/11/18	14:31:37 14:31:40	62.9 59.7
190	2021,	/11/18	14:31:43	58.8
191 192	2021, 2021,	/11/18	14:31:46 14:31:49	69.0 69.4
193	2021,	/11/18	14:31:52	66.4
194	2021,	/11/18	14:31:55	71.0

195 196	2021	L/1 1/1	$\frac{1}{1}$	18	14 14	:31	:58 :01	72.6
197	2021	L/1	1/	18	14	: 32	:04	69.2
198 199	2021	L/1 I/1	$\frac{1}{1}$	18 1 18 1	14 14	:32	:07 ·10	64.7 66 0
200	2021	ľ/1	1/	18	14	:32	13	67.5
201	202	L/1 L/1	$\frac{1}{1}$	18 . 18 :	14 14	:32	:16 :19	66.3 68.6
203	202	Ľ/1	1/	18	14	: 32	22	65.8
204 205	202	L/1 L/1	$\frac{1}{1}$	18 . 18 :	14 14	:32	25	69.8 69.3
206	202	Ĺ/1	1/	18	14	: 32	31	69.0
207	202	L/ 1 L/1	1/. 1/1	18 . 18 :	14 14	:32	: 34 : 37	68.7
209	2021	Ľ/1	1/	18	14	: 32	40	70.3
210	202	L/1 L/1	$\frac{1}{1}$	18 . 18 :	14 14	:32	:43 :46	71.0 69.6
212	202	Ĺ/1	1/	18	14	: 32	:49	66.7
213	202	L/ 1 L/1	$\frac{1}{1}$	18 . 18 :	14 14	:32	:52	69.1 70.3
215	202	Ĺ/1	1/	18	14	: 32	58	71.9
216	202	L/ 1 L/1	1/. 1/1	18 . 18 :	14 14	:33	:01	69.8
218	2021	Ľ/1	1/1	18	14	:33	:07	63.3
220	202	L/ 1 L/1	1/1	18 1	14 14	:33	:10	57.8
221	202	Ĺ/1	1/	18	14	:33	:16	56.8
222	202	L/ 1 L/1	1/1	10 . 18 :	14 14	:33	:22	53.7
224	202	Ľ/1	1/1		14	:33	25	52.0
226	2021	L/ 1 L/1	$\frac{1}{1}$	18 1	14 14	:33	:31	52.0
227	2021	L/1	1/		14 14	:33	34	54.4
229	2021	L/1 L/1	$\frac{1}{1/2}$	18 1	14 14	:33	:40	58.7
230	202	$\frac{1}{1}$	1/		14 14	:33	43	68.5
232	2021	L/ 1 L/1	$\frac{1}{1}$	18 1	14 14	:33	:40	63.1
233	202	L/1	1/		14	:33	52	62.3
234	2021	L/1 L/1	1/1	18 1	14 14	:33	:58	60.5
236	2021	L/1	1/		14 14	:34	:01	60.1
238	2021	L/1 L/1	$\frac{1}{1/2}$	18 1	14 14	:34	:07	71.9
239	202	L/1	1/		14	:34	:10	72.5
240	2021	L/1 L/1	1/1	18 1	14	:34	:16	71.8
242	2021	L/1 1/1	1/1	18	14 14	:34	:19	70.9
244	2021	L/1	1/1		14	:34	25	69.4
245	2021	L/1 1/1	$\frac{1}{1}$	18 1	14 14	:34	:28 · 31	71.0
247	2021	1/1	1/	18 1	14	:34	34	69.5
248 249	2021	L/1 1/1	$\frac{1}{1}$	18 1	14 14	:34 ·34	: 37 · 40	72.9
250	2021	L/1	1/	18	14	:34	43	70.6
251	2021	L/1 I/1	1/1	18 1 18 1	14 14	:34 •34	:46 ·49	67.2
253	202	[/]	1/	18	14	:34	52	73.0
254	202	L/1 L/1	1/.	18. 18. 1	14 14	:34 :34	: 55 : 58	68.1 63.4
256	2021	Ľ/1	1/	18	14	:35	01	73.3
257	202	L/1 L/1	$\frac{1}{1}$	18. 18. 1	14 14	:35	:04 :07	64.8 66.8
259	202	Ľ/1	1/	18	14	:35	10	66.3
260	202	L/ 1 L/1	1/.	18 . 18 :	14 14	:35	:13	67.8
262	2021	Ľ/1	1/1	18	14	:35	:19	61.9
263	202	L/ 1 L/1	$\frac{1}{1}$	18 . 18 :	14 14	:35	22	64.4
265	2021	L/1	1/1	18	14	:35	28	60.5
267	2021	L/1 L/1	1/1	18	14 14	:35	:34	63.8
268	2021	L/1 1/1	1/1		14 17	:35	37	65.1
270	2021	L/1	1/1	18	14	:35	43	66.3
271 272	2021	L/1 I/1	$\frac{1}{1}$	18 1	14 14	:35	:46 :49	57.8
273	202	[/]	1/	18	14	:35	52	50.3
274	202	L/ 1 L/1	1/.	18 . 18 :	14 14	:35	: 5 5 : 5 8	57.6 63.3
276	2021	Ľ/1	1/1	18	14	:36	:01	61.3
278	2021	L/1 L/1	1/1	18	14 14	:36	:07	73.8
279	2021	L/1 1/1	$\frac{1}{1}$	18	14 14	:36	:10 ·13	79.9
281	202	[/]	1/	18	14	:36	16	74.1
282	202	L/1 L/1	$\frac{1}{1}$	18. 18. 1	14 14	:36	: 19 : 22	72.1
284	202	Ľ/1	1/	18	14	:36	25	<u>69.1</u>
∠85 286	202	ι/1 L/1	1/1 1/1	18 18	⊥4 14	:36	20 31	70.5 74.1
287	202	Ĺ/1	1/	18	14	:36	34	71.5
∠ŏŏ 289	202	ι/1 L/1	1/1	18 18	⊥4 14	:36 :36	:40	71.9 74.0
290	202	L/1	1/		14	:36	43	74.0
291 292	202	L/1 L/1	1/1 1/1	10. 18.	⊥4 14	:36	40 :49	72.9 69.8
293 201	202	L/1	1/	18	14 11	:36	52	70.3
295	2021	L/1	1/	18	14	:36	58	74.8
296 297	2021	L/1 /1	1/1 1/1	18 18	14 14	:37	:01 :04	73.5
298	2021	ī/1	1/	18	14	:37	07	69.1

299	2021/11/18	14:37:10	68.7
300	2021/11/18	14:37:13	63.1
301	2021/11/18	14:37:16	61.4
302	2021/11/18	14:37:19	63.9

No.s	Date Time	(dB)	
1 2 3	2021/11/18 14:58:46 2021/11/18 14:58:49 2021/11/18 14:58:52	51.6 50.2	
4 5	2021/11/18 14:58:55 2021/11/18 14:58:58	42.5	
6	2021/11/18 14:59:01	43.1	
7	2021/11/18 14:59:04	42.8	
8	2021/11/18 14:59:07	42.1	
9 10	2021/11/18 14:59:10 2021/11/18 14:59:13	42.5	
11	2021/11/18 14:59:16	41.3	
12	2021/11/18 14:59:19	41.4	
13	2021/11/18 14:59:22	42.7	
14 15	2021/11/18 14:59:25 2021/11/18 14:59:28 2021/11/18 14:59:28	42.4 42.0	
16	2021/11/18 14:59:31	41.0	
17	2021/11/18 14:59:34	41.9	
18	2021/11/18 14:59:37	43.2	
19	2021/11/18 14:59:40	42.9	
20	2021/11/18 14:59:43	43.9	
21	2021/11/18 14:59:46	44.8	
22	2021/11/18 14:59:49	44.4	
23	2021/11/18 14:59:52	48.0	
24	2021/11/18 14:59:55	45.9	
25	2021/11/18 14:59:58	45.6	
26	2021/11/18 15:00:01	44.5	
27	2021/11/18 15:00:04	50.7	
28	2021/11/18 15:00:07	47.8	
29	2021/11/18 15:00:10	44.2	
30	2021/11/18 15:00:13	44.5	
31	2021/11/18 15:00:16	42.7	
32	2021/11/18 15:00:19	44.7	
33	2021/11/18 15:00:22	44.1	
34	2021/11/18 15:00:25	46.0	
35	2021/11/18 15:00:28 2021/11/18 15:00:31 2021/11/18 15:00:31	43.2	
37	2021/11/18 15:00:34	46.8	
38	2021/11/18 15:00:37	44.9	
39	2021/11/18 15:00:40	43.4	
40	2021/11/18 15:00:43	44.5	
41	2021/11/18 15:00:46	42.8	
42	2021/11/18 15:00:49	43.5	
43 44	2021/11/18 15:00:52 2021/11/18 15:00:55 2021/11/18 15:00:55	44.5	
45	2021/11/18 15:00:58	43.6	
46	2021/11/18 15:01:01	41.8	
47	2021/11/18 15:01:04	41.6	
48	2021/11/18 15:01:07	42.1	
49	2021/11/18 15:01:10	44.6	
50	2021/11/18 15:01:13	42.8	
51	2021/11/18 15:01:16	41.0	
52	2021/11/18 15:01:19	43.1	
53	2021/11/18 15:01:22	42.6	
54	2021/11/18 15:01:25	41.5	
55	2021/11/18 15:01:28	42.0	
56 57	2021/11/18 15:01:31 2021/11/18 15:01:34 2021/11/18 15:01:34	42.3	
59 60	2021/11/18 15:01:37 2021/11/18 15:01:40 2021/11/18 15:01:43	40.8 40.8 41.0	
61	2021/11/18 15:01:46	42.7	
62	2021/11/18 15:01:49	41.1	
63	2021/11/18 15:01:52	41.3	
64 65	2021/11/18 15:01:55 2021/11/18 15:01:58 2021/11/18 15:01:58	41.5 42.6	
67 68	2021/11/18 15:02:01 2021/11/18 15:02:04 2021/11/18 15:02:07	42.0 42.4 42.9	
69	2021/11/18 15:02:10	42.4	
70	2021/11/18 15:02:13	42.8	
71	2021/11/18 15:02:16	41 8	
72 73	2021/11/18 15:02:19 2021/11/18 15:02:22 2021/11/18 15:02:22	42.3	
74	2021/11/18 15:02:25	41.3	
75	2021/11/18 15:02:28	41.4	
76	2021/11/18 15:02:31	41.7	
77	2021/11/18 15:02:34	42.5	
78	2021/11/18 15:02:37	42.2	
79	2021/11/18 15:02:40	43.2	
80 81	2021/11/18 15:02:43 2021/11/18 15:02:43 2021/11/18 15:02:46	44.2	
82	2021/11/18 15:02:49	45.2	
83	2021/11/18 15:02:52	45.8	
84	2021/11/18 15:02:55	44.8	
85 86	2021/11/18 15:02:58 2021/11/18 15:03:01 2021/11/18 15:03:01	45.5	
87	2021/11/18 15:03:04	42.7	
88	2021/11/18 15:03:07	42.4	
89	2021/11/18 15:03:10	41.9	
90	2021/11/18 15:03:13	41.5	

91 92	2021/ 2021/	$\frac{11}{18}$ $\frac{11}{18}$	15:03:16 15:03:19	41.4 41.2
93	2021/	$\frac{11}{18}$	15:03:22	41.5
95	2021/	11/18 $11/18$	15:03:23	41.5
96 97	2021/ 2021/	$\frac{11}{18}$ $\frac{11}{18}$	15:03:31 15:03:34	41.8 41.7
98	2021/	$\frac{11}{18}$	15:03:37	41.5
99 100	2021/	11/18 11/18	15:03:40	41.1
101 102	2021/2021/	$\frac{11}{18}$	15:03:46 15:03:49	41.7 41.9
103	2021/	$\frac{11}{18}$	15:03:52	43.8
104	2021/ 2021/	11/18 11/18	15:03:55	42.2
106 107	2021/	11/18	15:04:01 15:04:04	42.6
108	2021/	$\frac{11}{18}$	15:04:07	43.9
109 110	2021/ 2021/	$\frac{11}{18}$ $\frac{11}{18}$	15:04:10 15:04:13	44.1 44.4
111	2021/	$\frac{11}{18}$	15:04:16	45.6
113	2021/	11/18 $11/18$	15:04:19	46.8
114 115	2021/2021/	$\frac{11}{18}$	15:04:25 15:04:28	44.3
116	2021/	$\frac{11}{18}$	15:04:31	44.2
118	2021/	11/18 11/18	15:04:34	42.7
119 120	2021/2021/	$\frac{11}{18}$	15:04:40 15:04:43	43.5 44.4
121	2021/	$\frac{11}{18}$	15:04:46	42.3
122	2021/ 2021/	11/18 $11/18$	15:04:49	42.1 41.9
124	2021/	$\frac{11}{18}$	15:04:55 15:04:58	42.2
126	2021/	11/18	15:05:01	44.9
127 128	2021/2021/	$\frac{11}{18}$ $\frac{11}{18}$	15:05:04 15:05:07	44.9 45.0
129	2021/	$\frac{11}{18}$	15:05:10	47.3
131	2021/	11/18 11/18	15:05:15	43.5
132 133	2021/2021/	$\frac{11}{18}$	15:05:19 15:05:22	47.2
134	2021/	$\frac{11}{18}$	15:05:25	44.4
135	2021/ 2021/	11/18 11/18	15:05:28	45.5
137 138	2021/	$\frac{11}{18}$	15:05:34 15:05:37	50.5
139	2021/	11/18	15:05:40	54.5
140 141	2021/ 2021/	$\frac{11}{18}$ $\frac{11}{18}$	15:05:43	51.7 51.9
142	2021/	$\frac{11}{18}$	15:05:49	52.3
144	2021/	11/18 $11/18$	15:05:55	52.3
145 146	2021/2021/	$\frac{11}{18}$ $\frac{11}{18}$	15:05:58 15:06:01	53.1 53.0
147	2021/	$\frac{11}{18}$	15:06:04	50.9
148	2021/	11/10 $11/18$	15:06:07	52.2
150 151	2021/2021/	$\frac{11}{18}$	15:06:13 15:06:16	50.7 49.2
152	2021/	$\frac{11}{18}$	15:06:19	47.4
154	2021/	11/18 11/18	15:06:22	45.2
155 156	2021/2021/	$\frac{11}{18}$	15:06:28 15:06:31	46.7 45.1
157	2021/	$\frac{11}{18}$	15:06:34	47.5
158	2021/	11/18 11/18	15:06:37	43.8
160 161	2021/	11/18	15:06:43	42.4 41 3
162	2021/	$\frac{11}{18}$	15:06:49	41.9
163 164	2021/ 2021/	11/18 $11/18$	15:06:52	41.7 41.9
165 166	2021/	11/18	15:06:58	41.1
167	2021/	$\frac{11}{18}$	15:07:04	41.7
168 169	2021/ 2021/	$\frac{11}{18}$ $\frac{11}{18}$	15:07:07 15:07:10	42.1
170	2021/	$\frac{11}{18}$	15:07:13	40.8
172	2021/	11/18 11/18	15:07:16	40.4
173 174	2021/2021/	$\frac{11}{18}$	15:07:22 15:07:25	41.3 43.0
175	2021/	$\frac{11}{18}$	15:07:28	46.4
177	2021/	$\frac{11}{18}$	15:07:31	41.5 41.7
178 179	2021/2021/	11/18 11/18	15:07:37 15:07:40	$\begin{array}{c} 41.1 \\ 41.5 \end{array}$
180	2021/	$\frac{11}{18}$	15:07:43	39.9
181 182	2021/ 2021/	11/18 11/18	15:07:46 15:07:49	40.5 41.0
183	2021/	11/18	15:07:52	41.6
185	2021/	11/18	15:07:58	40.0
186 187	2021/ 2021/	11/18 11/18	15:08:01 15:08:04	39.5 40.0
188	2021/	11/18	15:08:07	39.6
190	2021/	11/18	15:08:10	30.9 39.9
191 192	2021/ 2021/	11/18 11/18	15:08:16 15:08:19	40.3 40 0
193	2021/	11/18	15:08:22	39.5
194	2021/	11/18	15:08:25	40.2

195 196	2021/	$\frac{11}{18}$	15:08:28 15:08:31	40.7 40.1
197	2021/	11/18	15:08:34	40.3
198	2021/	11/18 11/18	15:08:37	40.0 40.1
200	2021/	11/18	15:08:43	40.3
201	2021/	11/18 11/18	15:08:40	41.8
203	2021/	$\frac{11}{18}$	15:08:52	42.5 42.1
205	2021/	11/18	15:08:58	42.1
206 207	2021/	$\frac{11}{18}$	15:09:01 15:09:04	42.6 42.3
208	2021/	11/18	15:09:07	43.3
209	2021/	11/18 $11/18$	15:09:10	42.4 48.1
211	2021/	11/18	15:09:16	44.7
212	2021/	11/10 $11/18$	15:09:19	44.5
214	2021/	$\frac{11}{18}$	15:09:25	44.0
216	2021/	11/18 11/18	15:09:31	45.8
217 218	2021/	$\frac{11}{18}$	15:09:34 15:09:37	42.3 43.6
219	2021/	11/18	15:09:40	43.2
220	2021/	11/18 11/18	15:09:43 15:09:46	47.6 41.6
222	2021/	11/18	15:09:49	50.1
223	2021/	11/18 $11/18$	15:09:52	42.8 40.8
225	2021/	11/18	15:09:58	42.2
220	2021/	11/10 $11/18$	15:10:01	41.9
228	2021/	$\frac{11}{18}$	15:10:07 $15\cdot10\cdot10$	43.6
230	2021/	11/18	15:10:10	44.9
231	2021/	$\frac{11}{18}$	15:10:16 $15\cdot10\cdot19$	46.9 46 9
233	2021/	11/18	15:10:22	50.4
234	2021/	11/18 11/18	15:10:25	52.2 65.6
236	2021/	11/18	15:10:31	59.4
237	2021/	11/18 11/18	15:10:34	50.5 46.6
239	2021/	$\frac{11}{18}$	15:10:40	45.7
240	2021/	11/18 11/18	15:10:45	46.9
242	2021/	$\frac{11}{18}$	15:10:49 $15\cdot10\cdot52$	45.6
244	2021/	11/18	15:10:55	46.6
245 246	2021/	11/18 11/18	15:10:58	$50.1 \\ 49.0$
247	2021/	$\frac{11}{18}$	15:11:04	51.9
248 249	2021/	11/18 11/18	15:11:07	50.2 53.1
250	2021/	$\frac{11}{18}$	15:11:13	52.6
252	2021/	11/18 11/18	15:11:10	48.5
253	2021/	$\frac{11}{18}$	15:11:22 $15\cdot11\cdot25$	47.5 46.6
255	2021/	11/18	15:11:28	48.3
256 257	2021/	11/18 11/18	15:11:31	47.2 45.7
258	2021/	11/18	15:11:37	46.6
259	2021/	11/18 11/18	15:11:40	46.3 45.7
261	2021/	$\frac{11}{18}$	15:11:46	44.7
263	2021/	11/18 11/18	15:11:52	46.5
264	2021/	$\frac{11}{18}$	15:11:55 $15\cdot11\cdot58$	46.2 46.6
266	2021/	11/18	15:12:01	47.7
267	2021/	11/18 $11/18$	15:12:04	46.8 47.6
269	2021/	11/18	15:12:10	47.3
270	2021/	11/10 $11/18$	15:12:15	47.1
272	2021/	$\frac{11}{18}$	15:12:19 $15\cdot12\cdot22$	49.9 47 8
274	2021/	11/18	15:12:25	47.7
275 276	2021/	$\frac{11}{18}$	15:12:28	46.0 46.2
277	2021/	$\frac{11}{18}$	15:12:34	44.7
278	2021/	11/18 11/18	15:12:37	47.1 45.7
280	2021/	$\frac{11}{18}$	15:12:43	45.4
282	2021/	11/18	15:12:49	40.7
283 284	2021/	11/18 11/18	15:12:52 15·12·55	39.9 41 5
285	2021/	11/18	15:12:58	40.5
286 287	2021/2	11/18	15:13:01 15:13:04	40.7 43.7
288	2021/		15:13:07	46.2
289 290	2021/	11/18	15:13:10	45.9 42.4
291 202	2021/	11/18	15:13:16 $15\cdot13\cdot10$	41.4
293	2021/	11/18	15:13:22	40.6
294 295	2021/	11/18 11/18	15:13:25 15:13·28	41.8 43 7
296	2021/		15:13:31	42.2
297 298	2021/2	11/18	15:13:34 15:13:37	41.7 41.8

2992021/11/1815:13:4041.93002021/11/1815:13:4340.2

Roadway Construction Noise Model (RCNM) Results

Roadway Construction Noise Model (RCNM), Version 1.1

Report date:2/24/2022Case Description:Blackhall Studios

				Rec	eptor #1
		Baselines ((dBA)		
Description	Land Use	Daytime	Evening	Night	
Residential	Residential	80	8	0	80

			Equipment				
			Spec	Actu	al	Receptor	Estimated
	Impact		Lmax	Lmax	(Distance	Shielding
Description	Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
Grader	No	40		85		200	0
Front End Loader	No	40			79.1	200	0
Dump Truck	No	40			76.5	200	0

Results

				Calculated (dBA)				
Equipment		*Lmax	Leq					
Grader		73	3	69				
Front End Loader		67.1	1	63.1				
Dump Truck		64.4	1	60.4				
	Total	73	3	70.4				
		* ~						

*Calculated Lmax is the Loudest value.

Mechanical Equipment Specifications

122313 - Blackhall Studios

Table of Contents

Technical Data Sheet for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	4
Drawings(1) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	8
Drawings(2) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	9
Drawings(3) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	10
Drawings(4) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	11
Drawings(5) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	12
Drawings(6) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	13
Fan Curve - Supply for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	14
Roofcurb Dimensions_Drawing for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	15
Roofcurb Knockout medium large box_Drawing for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	16
Unit Knockout, Large Box_Drawing for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B	17
Technical Data Sheet for AC-19A	18
Drawings(1) for AC-19A	22
Drawings(2) for AC-19A	23
Drawings(3) for AC-19A	24
Drawings(4) for AC-19A	25
Drawings(5) for AC-19A	26
Drawings(6) for AC-19A	27
Fan Curve - Supply for AC-19A	28
Roofcurb Dimensions_Drawing for AC-19A	29
Roofcurb Knockout medium large box_Drawing for AC-19A	30
Unit Knockout, Large Box_Drawing for AC-19A	31
Technical Data Sheet for AC-5A,5B	32
Drawings(1) for AC-5A,5B	36
Drawings(2) for AC-5A,5B	37
Drawings(3) for AC-5A,5B	38
Drawings(4) for AC-5A,5B	39
Drawings(5) for AC-5A,5B	40

Drawings(6) for AC-5A,5B	. 41
Fan Curve - Supply for AC-5A,5B	42
Roofcurb Dimensions_Drawing for AC-5A,5B	43
Roofcurb Knockout medium large box_Drawing for AC-5A,5B	44
Unit Knockout, Large Box_Drawing for AC-5A,5B	45
Technical Data Sheet for AC-24A,24B,24C,24D,24E	46
16-28 DoorSwing No ERW_Drawing for AC-24A,24B,24C,24D,24E	51
Cabinet C Sensor Locations_Drawing for AC-24A,24B,24C,24D,24E	52
Drawings(1) for AC-24A,24B,24C,24D,24E	53
Drawings(2) for AC-24A,24B,24C,24D,24E	54
Drawings(3) for AC-24A,24B,24C,24D,24E	55
Drawings(4) for AC-24A,24B,24C,24D,24E	56
Drawings(5) for AC-24A,24B,24C,24D,24E	57
Fan Curve - Exhaust for AC-24A,24B,24C,24D,24E	58
Fan Curve - Supply for AC-24A,24B,24C,24D,24E	59
Large Cabinet Rebel Base Rail_Drawing for AC-24A,24B,24C,24D,24E	60
Technical Data Sheet for AC-25A,25B	61
7-15 DoorSwing No ERW_Drawing for AC-25A,25B	66
Cabinet AB Sensor Locations_Drawing for AC-25A,25B	67
Drawings(1) for AC-25A,25B	68
Drawings(2) for AC-25A,25B	69
Drawings(3) for AC-25A,25B	. 70
Fan Curve - Exhaust for AC-25A,25B	. 71
Fan Curve - Supply for AC-25A,25B	. 72
Small and Medium Cabinet Rebel Base Rail_Drawing for AC-25A,25B	73
Technical Data Sheet for AC-6A,7A,8A,9A	74
Drawings(1) for AC-6A,7A,8A,9A	. 78
Drawings(2) for AC-6A,7A,8A,9A	79
Drawings(3) for AC-6A,7A,8A,9A	. 80
Drawings(4) for AC-6A,7A,8A,9A	81
Drawings(5) for AC-6A,7A,8A,9A	82
Drawings(6) for AC-6A,7A,8A,9A	83
Fan Curve - Supply for AC-6A,7A,8A,9A	84
Roofcurb Dimensions_Drawing for AC-6A,7A,8A,9A	85
Roofcurb Knockout medium large box_Drawing for AC-6A,7A,8A,9A	86
Unit Knockout, Large Box_Drawing for AC-6A,7A,8A,9A	87
Technical Data Sheet for AC-23A,23B,23C,23D,23E,23F	88

Drawings(1) for AC-23A,23B,23C,23D,23E,23F	
Drawings(2) for AC-23A,23B,23C,23D,23E,23F	
Drawings(3) for AC-23A,23B,23C,23D,23E,23F	
Drawings(4) for AC-23A,23B,23C,23D,23E,23F	
Drawings(5) for AC-23A,23B,23C,23D,23E,23F	
Drawings(6) for AC-23A,23B,23C,23D,23E,23F	
Fan Curve - Exhaust for AC-23A,23B,23C,23D,23E,23F	
Fan Curve - Supply for AC-23A,23B,23C,23D,23E,23F	
Roofcurb Dimensions_Drawing for AC-23A,23B,23C,23D,23E,23F	100
Roofcurb Knockout medium large box_Drawing for AC-23A,23B,23C,23D,23E,23F	101
Unit Knockout, Large Box_Drawing for AC-23A,23B,23C,23D,23E,23F	102
Technical Data Sheet for Restrooms 100% OSA	103
3-6 DoorSwing No ERW_Drawing for Restrooms 100% OSA	107
Cabinet AB Sensor Locations_Drawing for Restrooms 100% OSA	108
Drawings(1) for Restrooms 100% OSA	109
Drawings(2) for Restrooms 100% OSA	110
Drawings(3) for Restrooms 100% OSA	111
Fan Curve - Supply for Restrooms 100% OSA	112
Rebel 910143408_Drawing for Restrooms 100% OSA	113
Small and Medium Cabinet Rebel Base Rail_Drawing for Restrooms 100% OSA	114

Technical Data Sheet for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

Job In	formation	Technical Data Sheet	and the second s
Job Name	122313 - Blackhall Stud	ios	The second second
Date	2/2/2022		
Submitted By	Adrian Miramontes		
Software Version	07.91		19 Martin 19 Mar
Unit Tag	AC-1A, AC-2A, AC-3A, A AC-18B	C-4A, AC-10A, AC-11A, AC-12	2A, AC-13A, AC-14A, AC-15A, AC-16A, AC-17A, AC-
FPA#	TBD		

Unit Overview

Model Number	Voltage V/Hz/Phase	Design Cooling Capacity _{Btu/hr}	AHRI 360 Standard Efficiency	ASHRAE 90.1
RDT101D	460/60/3	914426	10.3	2016 Compliant
		Unit		
Model Number:	RDT101D			
Altitude:	0 ft			
Heat Type:	None			
Condenser Type:	Air-Cooled			
Condenser Sound:	Quiet Condenser Fans			
Approval	FTI /MFA-USA unit			

Physical				
		Unit		
Length	Height	Width	Weight	Estimated Lifting Lugs
379 in	97.0 in	99.0 in	13059 lb	3 per side
Electrical				

Voltage	MCA	MROPD	SCCR
460/60/3	223.5 A	250 A	65 kAIC
Note:	Use only copper supply wires with amp terminals must be made with copper lu	acity based on 75° C conductor rating gs and copper wire.	g. Connections to

Return/Outside/Exhaust Air				
Outside Air Option				
Туре	Pressure Drop	Damper Actuator		
California and 90.1 Compliant Economizer	0.20 inH ₂ O	Electric Actuator		
Return Air Option				
Return Air Location: Back				

Filter Section

		Physical		
Туре	(Quantity) Height x Width x Depth	Face Area	Face Velocity	Air Pressure Drop
2 in. 85% Nominal Efficiency (MERV 13)	(11) 16 in x 20 in x 2 in (33) 16 in x 25 in x 2 in	116.1 ft ²	258.4 ft/min	0.15 inH₂O
Technical Data Sheet for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

DX Cooling Coil										
Physical										
Fins per Inch	Rows	Face Area	Face Velocity Air Pressure drop Drain Pan Mat		Drain Pan Material	Casing Material				
10	5	60.8 ft ²	493.4 ft/	min 0.6	0 inH₂O	Stainless Steel	Stainles	s Steel		
Cooling Performance										
Сара	Capacity Refrigerant		Indoor Air Temperature				Ambient Air Temperature			
Total	Sensible	Туре	Ente	ering	Leaving		Dry Bulb	Wet Bulb		
Btu/hr	Btu/hr		Dry Bulb °F	Wet Bulb °F	Dry Bulb °F	Wet Bulb °F	°F	°F		
914426	879764	R410A	74.0	58.3	47.2	46.6	105.0	70.0		

Biological Control: UV Light

Fan Section								
Fan								
Туре	Fan Wheel Diameter	Fan Isolation	Fan Efficiency Index					
AF SWSI	44 in	Spring	0.561					
Performance								
Airflow	Total Static Pressure	Fan Speed	Brake Horsepower					
30000 CFM	3.45 inH₂O	931 rpm	29.33 нр					
	Motor		Drive					
Туре	Horsepower	FLA	Туре					
ODP, Premium Efficiency	40.0 hp	46.0 A	Standard service factor, Fixed drive					

Discharge Location: Left Side

Unit Discharge Conditions								
AirTemperature								
DX coil Configuration:	Draw-thru Coil	Draw-thru Coil						
Motor Heat Btu/br	Moisture Removal	Unit Leaving Dry Bulb °F	Unit Leaving Wet Bulb °F	Unit Leaving Dewpoint °F				
84846	30.0	49.8	47.4	46.0				

Technical Data Sheet for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

Condensing Section									
				Comp	ressor				
Туре		Quantity		Total F	ower	Сар	acity Control	Compres	sor Isolation
Scroll		6		91.0	kW		6 stage	Re	silient
				Compress	or Amps:				
	Fixed Sp	peed Compresso	r 1		23.1 A				
	Fixed Sp	peed Compresso	r 2				26.9 A		
	Fixed Sp	peed Compresso	r 3				23.1 A		
Fixed Speed Compressor 4							26.9 A		
	Fixed Sp	peed Compresso	r 5				23.1 A		
	Fixed Sp	peed Compresso	r 6				26.9 A		
Compressor Options: Refrigeration Service Valves									
Piping C	Piping Options: Hot gas bypass, circuit 1, 2, Replaceable core filter drier								
	Condenser Coil								
Туре			Fins per Inch Fin Material				Refrigerant	Charge	
Aluminum tube N	1icroChai	nnel	18		Aluminum		106.6 lb		
Condenser Coil C	Options:	Build in Hail Prot	ection						
				Condenser	Fan Motors				
	Nu	mber of Motors					Full Load Current	(each)	
		9			1.5 A				
		Α	HRI 360 Certi	ified Data at A	HRI 360 Standa	rd Condition	S		
EER				EER ASHRAE 90.1					
10.3				13.4 2016 Compliant				t	
Sound									
				Sound Po	wer (db)				
Frequency	63 Hz	125 Hz	250 Hz	500	Hz	1 kHz	2 kHz	4 kHz	8 kHz

Inlet	87	86	81	76	73	66	58	50
Discharge	88	85	81	79	78	73	65	58
Radiated	-	95	85	85	87	86	79	73
Supply Fan Total Pressure Drop Calculation								

Supply full fotal fressure prop calculation					
1.50 inH₂O					
0.15 inH ₂ O					
1.00 inH ₂ O					
0.20 inH ₂ O					
0.60 inH ₂ O					
3.45 inH₂O					

Technical Data Sheet for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

Options			
	Unit		
Unit Exterior:	Prepainted Galvanized Steel		
Insulation and Liners:	2", 1 1/2# nominal insulation, full solid liners, perf in fan sections		
Underliners:	Sheet Metal Underliner - Recommended for rail mounted units		
Fan Section Lights:	Supply Fan Section Light		
Fan Shaft Grounding:	Fan motors are provided with shaft grounding rings and class H insulation.		
	Electrical		
Electrical Connection Option:	Single thru door disconnect switch		
GFI 115v Receptacle:	Field powered		
Power Options:	Phase Failure and Groundfault Protection		
Controls			
Application:	Variable Volume - Discharge Air Control		
Temperature Control:	DAC, BACNet MSTP communication card		
Fan Speed Control:	Factory mounted Inverter		
Inverter Manufacturer:	Daikin		
Inverter Location:	Inverter(s) in fan section		
Airflow Control:	1 duct sensor		
Economizer Control:	Outside Air Dry Bulb and Enthalpy Control		
Bypass Contactors:	Factory mounted Bypass Contactors		
Low Ambient:	Speedtrol, operation to 0 deg F (-18 deg C)		

Warranty

Parts: Compressor:

Standard 1 year Extended 4 year, 5 year total

AHRI Certification

All equipment is rated and certified in accordance with AHRI 360.

	Specials
	Unit
Specials Description:	 Provide 65 kAIC rating. Unit is provided with higher than standard SCCR rating and must be marked as a special for processing. Pricing is already accounted for in the item summary. Use FPA# "SCCR" Unit provided with factory wired terminals for Purge Sequence. Unit will be marked as a special for processing. Use FPA# "Purge" if no other specials from Applications. Provide Condensate Overflow alarm for Cooling Coil drain pan. Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing" if no other specials from Applications Provide a 72" economizer section with reduced return opening. Unit must be marked as a special for processing. Use FPA# "72Econo" if no other specials from Applications.

Notes

Unit has been selected with bare condenser coil. Is this application more than 50 miles from the coast?

Drawings(4) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

Drawings(5) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

	Product Drawing	Unit Tag:		Sales Office: Norman S. Wright-Climatec Mechl Equip			DAIKIN		
2/	Product:	Project Name:	122313 - Bl	ackhall Studios	Sales Engine	eer:		12600 Industrial Bark Plud	Minnoanolic, MNI EE441
5/5	Model: RDT101D	Feb. 02, 2022	Ver/Rev:	Sheet: 1 of 1	Scale: NTS	Tolerance: +/- 0.25"	Dwg Units: in [mm]	www.DaikinApplied.com	Software Version: 07.91
0	No change to this drawing may be made unless approve	d in writing by Daiki	n Applied. Purc	haser must determine t	hat the equipm	nent is fit and sufficien	t for the job specificati	ions.	

Drawings(6) for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

Job Number: Job Name: GA8KLG 122313 - Blackhall Studios

13 of 115 Page

Dimensions						
Description	Letter	Dimensions (in)				
Curb Length	A	233.6				
Condenser Rail	В	99.0				
Return Air Opening Length	С	31.8				
Supply Air Opening Length	D	0.0				
Return Air Opening Width	E	87.0				
Supply Air Opening Width	F	81.0				
Condenser Rail Overhang	G	5.0				
Condenser Rail Overhang	Н	5.0				
Return Air Opening Location	J	6.8				

Page 15 of 115

Prepared Date:

2/2/2022 www.DaikinApplied.com

1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B Roofcurb Knockout medium large box_Drawing for

Unit Knockout, Large Box_Drawing for 1A,2A,3A,4A,10A,11A,12A,13A,14A,15A,16A,17A,18A18B

www.DaikinApplied.com

Job In	formation	Technical Data Sheet
Job Name	122313 - Blackhall Stud	ios
Date	2/2/2022	
Submitted By	Adrian Miramontes	
Software Version	07.91	
Unit Tag	AC-19A	
FPA#	TBD	

Unit Overview

Model Number	Voltage V/Hz/Phase	Design Cooling Capacity _{Btu/hr}	AHRI 360 Standard Efficiency	ASHRAE 90.1
RDT071D	460/60/3	659146	9.9	2016 Compliant

	Unit
Model Number:	RDT071D
Altitude:	0 ft
Heat Type:	None
Condenser Type:	Air-Cooled
Condenser Sound:	Quiet Condenser Fans
Approval	ETL/MEA-USA unit

Ur	t	
Length Height Wi	th Weight Es	stimated Lifting Lugs
322 in 73.0 in 99.	in 10202 lb	2 per side

Electrical				
Voltage		MCA	MROPD	SCCR
460/60/3		155.8 A	175 A	65 kAIC
	Note:	Use only copper supply wires with amp terminals must be made with copper lu	acity based on 75° C conductor rating gs and copper wire.	g. Connections to

Return/Outside/Exhaust Air					
	Outside Air Option				
Туре	Pressure Drop	Damper Actuator			
California and 90.1 Compliant Economizer	0.19 inH ₂ O	Electric Actuator			
	Return Air Option				
Return Air Location: Back					

Filter Section				
		Physical		
Туре	(Quantity) Height x Width x Depth	Face Area	Face Velocity	Air Pressure Drop
2 in. 85% Nominal Efficiency (MERV 13)	(7) 16 in x 20 in x 2 in (21) 16 in x 25 in x 2 in	73.9 ft ²	297.7 ft/min	0.18 inH₂O

DX Cooling Co	il							
	Physical							
Fins per Inch	Rows	Face Area	Face Velo	city Air Pre	essure drop	Drain Pan Material	Casing N	Aaterial
12	6	39.5 ft ²	557.0 ft/	'min 1.0	2 inH₂O	Stainless Steel	Stainles	s Steel
			Co	ooling Performance	2			
Сара	acity	Refrigerant	Indoor Air Temperature Ambient Air T			Ambient Air Te	mperature	
Total	Sensible	Туре	Ente	ering	Lea	aving	Dry Bulb	Wet Bulb
Btu/hr	Btu/hr		Dry Bulb °F	Wet Bulb °F	Dry Bulb °F	Wet Bulb °F	°F	°F
659146	642653	R410A	74.0	58.3	47.3	46.8	105.0	70.0
Biolo	ogical Control:	UV Light						

Fan Section Fan Туре Fan Wheel Diameter Fan Isolation Fan Efficiency Index AF SWSI 40 in 0.714 Spring Performance **Total Static Pressure** Airflow Fan Speed Brake Horsepower 22000 CFM 3.89 inH₂O 989 rpm 21.39 нр Motor Drive Туре Horsepower FLA Туре ODP, Premium Efficiency 25.0 hp 30.0 A Standard service factor, Fixed drive

Discharge Location: Left Side

Unit Discharge Conditions						
		AirTemperature				
DX coil Configuration:	Draw-thru Coil					
Motor Heat	Moisture Removal	Unit Leaving Dry Bulb	Unit Leaving Wet Bulb	Unit Leaving Dewpoint		
60830	13.8	49.8	47.6	46.3		

Condensing Section						
		Compressor				
Туре	Quantity	Total Power	Capacity Control	Compressor Isolation		
Scroll	6	69.0 kW	6 stage	Resilient		
Compressor Amps:						
Fixed S	Speed Compressor 1		17.	9 A		
Fixed S	Speed Compressor 2		17.	9 A		
Fixed S	Speed Compressor 3		17.	9 A		
Fixed S	Speed Compressor 4		17.	9 A		
Fixed S	Speed Compressor 5		17.	9 A		
Fixed Speed Compressor 6 17.9 A				9 A		
Compressor Options:	Refrigeration Service Valves					
Piping Options:	Hot gas bypass, circuit 1, 2, Replaceable core filter drier					
		Condenser Coil				
Туре	Fins per li	nch	Fin Material	Refrigerant Charge		
Aluminum tube MicroCha	annel 18		Aluminum 63.0 lb			
Condenser Coil Options:	Build in Hail Protection					
		Condenser Fan Motors				
N	lumber of Motors		Full Load Current (each)			
	6		1.5	Ā		
AHRI 360 Certified Data at AHRI 360 Standard Conditions						
EER IEI			ER ASHRAE 90.1			
9.9 1		14		2016 Compliant		
Sound						

				Sound Power (db)				
Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Inlet	84	83	78	73	70	63	55	47
Discharge	85	82	78	76	75	70	62	55
Radiated	-	92	83	84	86	84	77	73

Supply Fan Total Pressure Drop Calculation				
External Static Pressure:	1.50 inH₂O			
Filter:	0.18 inH ₂ O			
Dirty Filter:	1.00 inH ₂ O			
Outside Air:	0.19 inH ₂ O			
DX Coil:	1.02 inH ₂ O			
Total Static Pressure:	3.89 inH ₂ O			

Options				
	Unit			
Unit Exterior:	Prepainted Galvanized Steel			
Insulation and Liners:	2", 1 1/2# nominal insulation, full solid liners, perf in fan sections			
Underliners:	Sheet Metal Underliner - Recommended for rail mounted units			
Fan Section Lights:	Supply Fan Section Light			
Fan Shaft Grounding:	Fan motors are provided with shaft grounding rings and class H insulation.			
	Electrical			
Electrical Connection Option:	Single thru door disconnect switch			
GFI 115v Receptacle:	Field powered			
Power Options:	Phase Failure and Groundfault Protection			
Controls				
Application:	Variable Volume - Discharge Air Control			
Temperature Control:	DAC, BACNet MSTP communication card			
Fan Speed Control:	Factory mounted Inverter			
Inverter Manufacturer:	Daikin			
Inverter Location:	Inverter(s) in fan section			
Airflow Control:	1 duct sensor			
Economizer Control:	Outside Air Dry Bulb and Enthalpy Control			
Bypass Contactors:	Factory mounted Bypass Contactors			
Low Ambient:	Speedtrol, operation to 0 deg F (-18 deg C)			

Warranty

Parts: Compressor:

Standard 1 year Extended 4 year, 5 year total

AHRI Certification

All equipment is rated and certified in accordance with AHRI 360.

Unit Provide 65 kAIC rating. Unit is provided with higher than standard SCCR rating and must be marked as a special for processing. Pricing is already accounted for in the item summary. Use FPA# "SCCR" Unit provided with factory wired terminals for Purge Sequence. Unit will be marked as a special for processing . Use FPA# "Purge" if no other specials from Applications. Provide Condensate Overflow alarm for Cooling Coil drain pan. Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing. Use		Specials
Specials Description:Provide 65 kAIC rating. Unit is provided with higher than standard SCCR rating and must be marked as a special for processing. Pricing is already accounted for in the item summary. Use FPA# "SCCR" Unit provided with factory wired terminals for Purge Sequence. Unit will be marked as a special for processing . Use FPA# "Purge" if no other specials from Applications. Provide Condensate Overflow alarm for Cooling Coil drain pan. Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing. Use		Unit
FPA# "SSCasing" if no other specials from Applications	Specials Description:	 Provide 65 kAIC rating. Unit is provided with higher than standard SCCR rating and must be marked as a special for processing. Pricing is already accounted for in the item summary. Use FPA# "SCCR" Unit provided with factory wired terminals for Purge Sequence. Unit will be marked as a special for processing. Use FPA# "Purge" if no other specials from Applications. Provide Condensate Overflow alarm for Cooling Coil drain pan. Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing. Use FPA# "SSCasing" if no other specials from Applications

Notes

Unit has been selected with bare condenser coil. Is this application more than 50 miles from the coast?

Drawings(1) for AC-19A

Drawings(2) for AC-19A

Drawings(4) for AC-19A

Drawings(5) for AC-19A

26 of 115

Job Number: GA8KLG Job Name: 122313 - Blackhall Studios

Page 27 of 115

Dimensions						
Description	Letter	Dimensions (in)				
Curb Length	А	209.6				
Condenser Rail	В	74.0				
Return Air Opening Length	С	38.0				
Supply Air Opening Length	D	28.0				
Return Air Opening Width	E	87.0				
Supply Air Opening Width	F	81.0				
Condenser Rail Overhang	G	5.0				
Condenser Rail Overhang	Н	5.0				
Return Air Opening Location	J	6.8				

Roofcurb Dimensions_Drawing for AC-19A

Job Number: GA8KLG Job Name: 122313 - Blackhall Studios

Page 29 of 115

Ŵ

2/2/2022 www.DaikinApplied.com

Unit Knockout, Large Box_Drawing for AC-19A

www.DaikinApplied.com

Job In	formation	Technical Data Sheet
Job Name	122313 - Blackhall Stud	ios
Date	2/2/2022	
Submitted By	Adrian Miramontes	
Software Version	07.91	
Unit Tag	AC-5A, AC-5B	
FPA#	TBD	

Unit Overview

Model Number	Voltage V/Hz/Phase	Design Cooling Capacity _{Btu/hr}	AHRI 360 Standard Efficiency	ASHRAE 90.1
RDT081D	460/60/3	726560	10.1	2016 Compliant

Model Number: RDT081D Altitude: 0 ft Heat Type: None Condenser Type: Air-Cooled Quiet Condenser Fans		Unit
Altitude: 0 ft Heat Type: None Condenser Type: Air-Cooled Quiet Condenser Fans	Model Number:	RDT081D
Heat Type: None Condenser Type: Air-Cooled Quiet Condenser Fans	Altitude:	0 ft
Condenser Type: Air-Cooled Condenser Sound: Quiet Condenser Fans	Heat Type:	None
Condenser Sound: Quiet Condenser Fans	Condenser Type:	Air-Cooled
	Condenser Sound:	Quiet Condenser Fans
Approval ETL/MEA-USA unit	Approval	ETL/MEA-USA unit

,				
		Unit		
Length	Height	Width	Weight	Estimated Lifting Lugs
355 in	97.0 in	99.0 in	11907 lb	2 per side

Electrical					
Voltage	МСА	MROPD	SCCR		
460/60/3	160.6 A	175 A	65 kAIC		
No	Use only copper supply wires with amp terminals must be made with copper lu	Use only copper supply wires with ampacity based on 75° C conductor rating. Connections to terminals must be made with copper lugs and copper wire.			

Return/Outside/Exhaust Air						
	Outside Air Option					
Туре	Pressure Drop	Damper Actuator				
California and 90.1 Compliant Economizer	0.13 inH ₂ O	Electric Actuator				
	Return Air Option					
Return Air Location: Back						

Filter Section							
		Physical					
Туре	(Quantity) Height x Width x Depth	Face Area	Face Velocity	Air Pressure Drop			
2 in. 85% Nominal Efficiency (MERV 13)	(11) 16 in x 20 in x 2 in (33) 16 in x 25 in x 2 in	116.1 ft ²	206.7 ft/min	0.11 inH ₂ O			

DX Cooling Co	il							
	Physical							
Fins per Inch	Rows	Face Area	Face Velo	city Air Pre	ssure drop	Drain Pan Material	Casing N	Aaterial
12	4	53.9 ft ²	445.3 ft/	'min 0.4	9 inH₂O	Stainless Steel	Stainles	s Steel
			Co	ooling Performance	2			
Сара	acity	Refrigerant	Indoor Air Temperature				Ambient Air Te	mperature
Total	Sensible	Туре	Entering		Leaving		Dry Bulb	Wet Bulb
Btu/hr	Btu/hr		Dry Bulb °F	Wet Bulb °F	Dry Bulb °F	Wet Bulb °F	°F	°F
726560	699450	R410A	74.0	58.3	47.3	46.7	105.0	70.0
Biolo	ogical Control:	UV Light						

Fan Section Fan Туре Fan Wheel Diameter Fan Isolation Fan Efficiency Index AF SWSI 44 in 0.648 Spring Performance **Total Static Pressure** Airflow Fan Speed Brake Horsepower 24000 CFM 3.23 inH₂O 829 rpm 20.54 нр Motor Drive Туре Horsepower FLA Туре ODP, Premium Efficiency 25.0 hp 30.0 A Standard service factor, Fixed drive

Discharge Location: Left Side

Unit Discharge Conditions							
		AirTemperature					
DX coil Configuration:	Draw-thru Coil						
Motor Heat Btu/hr	Moisture Removal lb/h	Unit Leaving Dry Bulb °F	Unit Leaving Wet Bulb °F	Unit Leaving Dewpoint °F			
58670	23.3	49.6	47.4	46.0			

Condensing Section						
		Comp	ressor			
Туре	Quantity	Total Power Cap		Capacity Control	Compressor Isolation	
Scroll	6	75.5	5 kW	6 stage	Resilient	
		Compress	sor Amps:			
Fixed S	Speed Compressor 1			18.6	б А	
Fixed Speed Compressor 2			18.6 A			
Fixed Speed Compressor 3 18.6 A				б А		
Fixed Speed Compressor 4 18.6 A					б А	
Fixed Speed Compressor 5 18.6 A				б А		
Fixed Speed Compressor 6 18.6 A			б А			
Compressor Options:	Options: Refrigeration Service Valves					
Piping Options:	iping Options: Hot gas bypass, circuit 1, 2, Replaceable core filter drier					
		Conder	nser Coil			
Туре	Fins per	Inch	Fi	in Material	Refrigerant Charge	
Aluminum tube MicroCha	annel 18		A	luminum	96.0 lb	
Condenser Coil Options:	Build in Hail Protection					
		Condenser	Fan Motors			
N	lumber of Motors		Full Load Current (each)			
6		1.5 A				
AHRI 360 Certified Data at AHRI 360 Standard Conditions						
EER		IE	ER		ASHRAE 90.1	
10.1		14	1.4		2016 Compliant	

Sound								
Sound Power (db)								
Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Inlet	83	82	77	72	69	62	54	46
Discharge	84	81	77	75	74	69	61	54
Radiated	-	91	82	85	86	85	79	73

Supply Fan Total Pressure Drop Calculation		
External Static Pressure:	1.50 inH₂O	
Filter:	0.11 inH ₂ O	
Dirty Filter:	1.00 inH ₂ O	
Outside Air:	0.13 inH ₂ O	
DX Coil:	0.49 inH ₂ O	
Total Static Pressure:	3.23 inH ₂ O	

Options		
Unit		
Unit Exterior:	Prepainted Galvanized Steel	
Insulation and Liners:	2", 1 1/2# nominal insulation, full solid liners, perf in fan sections	
Underliners:	Sheet Metal Underliner - Recommended for rail mounted units	
Fan Section Lights:	Supply Fan Section Light	
Fan Shaft Grounding:	Fan motors are provided with shaft grounding rings and class H insulation.	
Electrical		
Electrical Connection Option:	Single thru door disconnect switch	
GFI 115v Receptacle:	Field powered	
Power Options:	Phase Failure and Groundfault Protection	
Controls		
Application:	Variable Volume - Discharge Air Control	
Temperature Control:	DAC, BACNet MSTP communication card	
Fan Speed Control:	Factory mounted Inverter	
Inverter Manufacturer:	Daikin	
Inverter Location:	Inverter(s) in fan section	
Airflow Control:	1 duct sensor	
Economizer Control:	Outside Air Dry Bulb and Enthalpy Control	
Bypass Contactors:	Factory mounted Bypass Contactors	
Low Ambient:	Speedtrol, operation to 0 deg F (-18 deg C)	

Warranty

Parts: Compressor:

Standard 1 year Extended 4 year, 5 year total

AHRI Certification

All equipment is rated and certified in accordance with AHRI 360.

Specials			
Unit			
Specials Description:	 Provide 65 kAIC rating. Unit is provided with higher than standard SCCR rating and must be marked as a special for processing. Pricing is already accounted for in the item summary. Use FPA# "SCCR" Unit provided with factory wired terminals for Purge Sequence. Unit will be marked as a special for processing. Use FPA# "Purge" if no other specials from Applications. Provide Condensate Overflow alarm for Cooling Coil drain pan. Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing" if no other specials from Applications Provide a 72" economizer section with reduced return opening. Unit must be marked as a special for processing. Use FPA# "72Econo" if no other specials from Applications. 		

Notes

Unit has been selected with bare condenser coil. Is this application more than 50 miles from the coast?

2/2/2022

Drawings(2) for AC-5A,5B

Drawings(3) for AC-5A,5B

Drawings(4) for AC-5A,5B

Drawings(5) for AC-5A,5B

www.DaikinApplied.com

www.DaikinApplied.com

Prepared Date:

Job Number: Job Name:

GA8KLG 122313 - Blackhall Studios

41 of 115

Page

Product Drawing	Unit Tag: AC-5A,5B			Sales Office: Norman S. Wright-Climatec Mechl Equip			DAIKIN	
Product:	Project Name:	122313 - Black	hall Studios	Sales Engineer:			12600 Industrial Dark Rhyd, Minnoapolis, MN EE/	
Model: RDT081D	Feb. 02, 2022	Ver/Rev:	Sheet: 1 of 1	Scale: NTS	Tolerance: +/- 0.25"	Dwg Units: in [mm]	www.DaikinApplied.com Software Version:	

No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.

Drawings(6) for AC-5A,5B

Dimensions							
Description Letter Dimensions							
Curb Length	A	209.6					
Condenser Rail	В	99.0					
Return Air Opening Length	С	31.8					
Supply Air Opening Length	D	38.0					
Return Air Opening Width	E	87.0					
Supply Air Opening Width	F	81.0					
Condenser Rail Overhang	G	5.0					
Condenser Rail Overhang	Н	5.0					
Return Air Opening Location	J	6.8					

Roofcurb Dimensions_Drawing for AC-5A,5B

Unit Knockout, Large Box_Drawing for AC-5A,5B

www.DaikinApplied.com

Job Inf	ormation	Technical Data Sheet
Job Name	122313 - Blackhall Studi	ios
Date	2/2/2022	
Submitted By	Adrian Miramontes	
Software Version	09.70	
Unit Tag	AC-24A, AC-24B, AC-240	C, AC-24D, AC-24E
FPA#	TBD	

Unit Overview

V/Hz/Phase Canacity	ASHRAF 90 1-2016	
Capacity EER IEER	Compliant	
Btu/hr Btu/hr DPS025A 460/60/3 277613 10.0 16.7	ASHRAE 90.1-2016	

Unit					
Model Number:	DPS025A				
Model Type:	Cooling				
Heat Type:	Gas				
Energy Recovery:	None				
Application:	Variable Air Volume, Duct SP Control (Mixed Air or 100% OA)				
Controls:	Microtech III				
Outside Air:	0-100% Economizer with Drybulb Control				
Altitude:	0 ft				
Approval	cETLus				

Physical **Dimensions and Weight** Length Height Width Weight 82.5in 4050 lb 162.3 in 76.5 in **Corner Weights** L2 L3 L1 L4 1128 lb 771 lb 874 lb 1278 lb Construction Exterior **Insulation and Liners** Air Opening Location Return Supply 2" Injected Foam, R13, Painted Galvanized Steel Horizontal Horizontal Galvanized Steel Liner . .

Electrical					
Unit FLA	MCA	MROPD	SCCR		
60.4 A	66.1 A	80 A	65 kAIC		
Note:	Use only copper supply wires with ampacity based on 75° C conductor rating. Connections to terminals must be made with copper lugs and copper wire.				

Return/Outside/Exhaust Air							
Outside Air Option							
Туре	Damper P	ressure Drop	Exhaust Air Type				
90.1 and California Title 24 Compliant 0.2 Economizer		l inH₂O	Powered, Modulating with Building Pressure Control				
Exhaust Fan							
Туре	Driv	е Туре	Wheel Diameter				
SWSI AF	Direc	t Drive	22 in				
	Motor						
(Qty) Horsepower	Туре	Efficiency	Full Load Current (Each)				
(1) 4.0 HP	ECM	Premium	4.0 A				
	Perfo	rmance					
Air Flow CFM	External Static Pressure inH ₂ O	Fan Speed RPM	Brake Horsepower HP				
6500	0.50	1315	1.73				

Filter Section				
		Physical		
Туре	Quantity / Size	Face Area	Face Velocity	Air Pressure Drop
2" MERV 8 & 4" MERV 14 Filters	9 / 18 in x 24 in x 2 in & 9 / 18 in x 24 in x 4 in	27.0 ft ²	240.7 ft/min	0.21

DX Cooling Coil								
Physical								
Coil Type	Refrigerant Type	e Fins per Inch	Rows	Face Are	a Face V	elocity A	Air Pressure drop	Drain Pan Material
Cu Tube/ Al Fin	R410A	15	4	21.4 ft ²	² 303.7	ft/min).33 inH₂O	Stainless Steel
Cooling Performance								
	Capacity			Indoo	r Air Temperatui	re		Ambient air
Total	Sensible	Moisture	Ente	Entering Leaving			Temperature	
Btu/hr	Btu/hr	Removal lb/h	Dry Bulb °F	Wet Bulb °F	Dry Bulb °F	Wet Bulb °F	Dewpoint °F	°F
277613	190790	74.9	80.3	67.3	53.5	53.4	53.4	105.0
Condensate Connection Size: 1.0 in. Male NPT								

Fan Section					
		Fan			
Туре		Fan Wheel Diameter			Fan Isolation
SWSI AF		20 in		Spi	ring Isolation
		Performance			
Airflow	Total Static Pressure	e Fan Speed	Brake Horsepower		Altitude
6500 CFM	3.1 inH₂O	2224 rpm		6.10 нр	0 ft
		Motor			Drive
Туре	Horsepower	Efficiency		FLA	Туре
Premium Eff Induction Motor	7.5	Premium		9.7 A	Direct Drive

Gas Heat Section								
Physical								
Airflow	Max Allowab Temp R	Max Allowable Burner Size Temp Rise		Connection (Qty) Size		Heat Exch	Heat Exchanger Material	
6500 CFM	60.0	0 °F 300 MBH (2) 0.75 in. Female NPT			Stainless Steel			
Performance								
Capacity	Air Temperat	ure Dry Bulb	Ib Air Pressure Drop		Gas Pressure		Modulation	
Btu/hr	Entering °F	Leaving °F	g	inH₂O	Minimum inH₂O	Maximum inH₂O		
240000	55.0	89.0		0.58	5	14	Modulating 12:1 Turndown	
Note:	Two gas connectio details on piping.	ns inside the	e unit. Single	e pipe enters u	nit and splits to tv	vo manifolds. Ref	er to IM 1125 for	

Unit Discharge Conditions

AirTemperature							
Motor Heat Btu/hr	Moisture Remova lb/h	I Unit Leaving Dry Bulb °F	Unit Leaving Wet Bulb °F	Unit Leaving Dewpoint °F			
17444	74.9	55.9	54.2	53.4			
Fan Only Minimum	n Airflow	Heating	g Minimum Airflow				
2145 CFN	1	1605 CFM		3687 CFM			
Notes	Refer to fan curve	e for applicability of approximate	airflows				

Condensing Secul	n

Compressor							
Туре	Quantity	Refrigerant Charge Ib	Total Power	Compressor Isolation			
Inverter Scroll + Fixed Scroll	2	35.5	22.77 kW	Mod Control with Inverter Compressor	Rubber in Shear		
		Compres	sor Amps:				
	Compressor 1			22.9 A			
	Compressor 2			18.6 A			
Compressor Options: Suction and Discharge Isolation Valves			ves				
		Conder	nser Coil				
Ту	pe	Fins p	er Inch	Fin Ma	aterial		
Aluminum N	1icrochannel	2	3	Alum	inum		
Coil Opti	ons: Vandal Guard						
		Condenser	Fan Motors				
	Number of Motors			Full Load Current (Total)			
2		5.2 A					
AHRI 360 Certified Data at AHRI 360 Standard Conditions							
Net Ca	pacity	EER	IEER	ASHRAE 90.1			
27200) Btu/hr	10.0	16.7	ASHRAE 90.1-2	016 compliant		

2/2/2022

Internal Pressure Drop Calculation						
External Static Pressure:	1.00 inH ₂ O					
Filter:	0.21 inH ₂ O					
Dirty Filter:	0.50 inH ₂ O					
Outside Air:	0.21 inH ₂ O					
DX Coil:	0.33 inH ₂ O					
Gas Heat:	0.58 inH₂O					
Horizontal Discharge:	0.32 inH ₂ O					
Total Static Pressure:	3.13 inH₂O					

Sound								
	Sound Power (db)							
Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Inlet	81	80	88	80	75	74	69	66
Discharge	87	86	91	86	84	81	76	71
Radiated	51	62	71	73	74	67	61	52

Options					
Unit					
Ventilation Controls:	Outdoor Air Monitor				
Electrical					
Field Connection: Fused Disc: 65 kAIC - 208/230/460V: 22 kAIC 575V					
Powered Receptacle: Field powered 115V GFI outlet					
Power Options: Phase Failure Monitor					
Controls					
Communication Card:	BACnet/MSTP card, Factory installed				

Factory Installed Sensors

Leaving Coil/Entering Fan Temperature Sensor
Duct High Limit Switch
Duct Static Pressure Sensor
BACnet/MSTP Card
Return Air Temperature Sensor
Discharge Air Temperature sensor – Wired in unit, mounted in supply duct
Outside Air Temperature Sensor
Dirty Filter On/Off Switch
Supply Fan Air Proving Via Modbus
Building Static Pressure Sensor
Ebtron Airflow Station

Warranty

Parts:	Standard One Year
Compressor:	Additional Four Year, Five Year Total
Gas Heat Exchanger:	Standard one Year

AHRI Certification

All equipment is rated and certified in accordance with AHRI 360.

Specials				
		Unit		
	Specials Description:	Provide stainless steel indoor coil casing. Use FPA# "Stainless"		
Notes				

GA8KLG 122313 - Blackhall Studios

51 of 115

Rebel 16-28 Tons Factory Installed Sensor Locations 1

Only applies to units with factory mounted controls

SENSO R DES CRIPTION	LABEL
Return AirTemp Sensor	A
Discharge Air Temp Sensor - Wired in	Б
unit, mounted in supply duct	Р
Outside Air Temp Sensor	С
Return Air Enthalpy Sensor	D
Outside Air Enthalpy Sensor	E
Dirty Filter On/Off Switch	F
Supply Fan Air Proving via Modbus	G
Duct High LimitSwitch	н
Duct Static Pressure Sensor	I
Building static pressure sensor	J
Leaving Coil/Entering Fan Temp Sensor	К
BACnet/IP card	
LON card	BAS
Daikin Intelligent Systems Card	Comm.
DIII Gateway Card (VRV communication)	
Condensate Overflow Switch	L
Ebtron Airflow Station	M
Supply Leaving Wheel Temp Sensor	N
Exhaust Leaving Wheel Temp Sensor	0
Return Air Relative Humidity Sensor	P
Energy Wheel VFD	Q

1) Sensors provided are based on unit selection. Refer to unit specific technical data sheet for selection specific sensor list

Product Drawing	Unit Tag: AC-24A,24B,24C,24D,24E			A State		
Product:	Project Name: 122313 - Blackhall Studios					
Model: DPS025A	Sales Office: Norman S. Wright-Climatec					
Sales Engineer:	Feb. 02, 2022	Ver/Rev:	Sheet 1 of 1	Scale: NTS	Tolerance: +/-0.25"	Dwg Units: in [mm]
No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job						fficient for the job
specifications.						

Job Number: G. Job Name: 12

Page 52 of 115

Drawings(1) for AC-24A,24B,24C,24D,24E

Drawings(3) for AC-24A,24B,24C,24D,24E

Job Number: Job Name: Drawings(5) for AC-24A,24B,24C,24D,24E GA8KLG 122313 - Blackhall Studios 57 of 115 **RETURN AIR** Page 29.5 7.9 Prepared Date: -24.7-62.4 www.DaikinApplied.com **ELEVATION VIEW - RETURN AIR OPENING LOCATION** Unit Tag: AC-24A,24B,24C,24D,24E **Product Drawing** Sales Office: Norman S. Wright-Climatec Mechl Equip DAIKIN 2/2/2022 Product: Project Name: 122313 - Blackhall Studios Sales Engineer: SalesEngineer 13600 Industrial Park Blvd. Minneapolis, MN 55441 Model: DPS025A Feb. 02, 2022 Ver/Rev: Sheet: 1 of 1 Scale: NTS Tolerance: +/- 0.25" Dwg Units: in [mm] www.DaikinApplied.com Software Version: 09.70 No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.

Job Inf	ormation	Technical Data Sheet
Job Name	122313 - Blackhall Studi	OS
Date	2/2/2022	
Submitted By	Adrian Miramontes	
Software Version	09.70	
Unit Tag	AC-25A, AC-25B	
FPA#	TBD	

Unit Overview

Model Number	Voltage	Design Cooling	AHRI360 Stand	ASHRAE 90.1-2016	
	V/Hz/Phase	Capacity Btu/hr	EER	IEER	Compliant
DPS010A	460/60/3	108284	12.1	18.8	ASHRAE 90.1-2016 compliant

	Unit
Model Number:	DPS010A
Model Type:	Cooling
Heat Type:	Gas
Hot Gas Reheat:	MHGRH with Field Provided Humidity Sensor
Energy Recovery:	None
Application:	Variable Air Volume, Duct SP Control (Mixed Air or 100% OA)
Controls:	Microtech III
Outside Air:	0-100% Economizer with Drybulb Control
Altitude:	0 ft
Approval	cETLus

Physical

Dimensions and Weight						
Length	Height	Width	Weight			
91.0 in	56.8in	96.5 in	2513 lb			
Corner Weights						
L1	L2	L3	L4			
410 lb	362 lb	817 lb	924 lb			
	Const	ruction				
Exterior	Insulation and Liners	Air Opening Location				
		Return	Supply			
Painted Galvanized Steel	1" Injected Foam, R-7, Galvanized Steel Liner	Bottom	Bottom			

Electrical					
Unit FLA	MCA	MROPD	SCCR		
20.5 A	22.5 A	30 A	65 kAIC		
Note:	Note: Use only copper supply wires with ampacity based on 75° C conductor rating. Connections to terminals must be made with copper lugs and copper wire.				

Return/Outside/Exhaust Air						
Outside Air Option						
Туре	Damper P	ressure Drop	Exhaust Air Type			
90.1 and California Title 24 Co Economizer	ompliant 0.06	5 inH₂O	Powered, Modulating with Building Pressure Control			
Exhaust Fan						
Туре	Driv	е Туре	Wheel Diameter			
SWSI AF	Direc	Drive 14 in				
	Μ	otor				
(Qty) Horsepower	Туре	Efficiency	Full Load Current (Each)			
(1) 2.3 HP	ECM	Premium	2.3 A			
	Perfo	rmance				
Air Flow CFM	External Static Pressure inH ₂ O	Fan Speed RPM	Brake Horsepower HP			
2600	0.50	1930	0.63			

Filter Section				
		Physical		
Туре	Quantity / Size	Face Area	Face Velocity	Air Pressure Drop
2" MERV 8 & 4" MERV 14 Filters	6 / 18 in x 24 in x 2 in & 6 / 18 in x 24 in x 4 in	18.0 ft ²	144.4 ft/min	0.19

DX Cooling Coi	DX Cooling Coil							
	Physical							
Coil Type	Refrigerant Type	Fins per Inch	Rows	Face Area	a Face V	elocity /	Air Pressure drop	Drain Pan Material
Cu Tube/ Al Fin	R410A	15	4	15.4 ft ²	168.5	ft/min	0.14 inH ₂ O	Stainless Steel
			Cooli	ng Performance				
	Capacity			Indooi	r Air Temperatu	re		Ambient air
Total	Sensible	Moisture	Entering Leaving			Leaving		Temperature
Btu/hr	Btu/hr	Removal lb/h	Dry Bulb °F	Wet Bulb °F	Dry Bulb °F	Wet Bulb °F	Dewpoint °F	°F
108284	74021	29.7	79.5	66.8	53.5	53.1	52.9	105.0
Condensate Con	Condensate Connection Size: 3/4 in. Male NPT							

Hot Gas Reheat Coil Section							
Туре	Face Area	Air Pressure Drop	Total Capacity	Leaving Air Temperature			
				Dry Bulb	Wet Bulb		
Aluminum Tube Micro-Channel	14.6 ft ²	0.03 inH ₂ O	46646 Btu/hr	70.0 °F	59.4 °F		

Fan Section							
	Fan						
Type Fan Wheel Diameter Fan Isolation				Fan Isolation			
SWSLAF 22 in None			None				
Performance							
Airflow	Total Static Pressure	Fan Speed	Brake	e Horsepower	Altitude		
2600 CFM	2.4 inH₂O	1233 rpm		1.74 нр	0 ft		
	Μ	otor			Drive		
Туре	Horsepower	Efficiency FLA			Туре		
ECM Motor	4.0	Premium		4.0 A	Direct Drive		

Gas Heat Section

Physical								
Airflow	Max Allowab Temp R	Max Allowable Burner S Temp Rise		Connection (Qty) Size		Heat Excl	Heat Exchanger Material	
2600 CFM	60.0	°F	200 MBH (1) 0.75 in. Female NPT		00 MBH (1) 0.75 in. Female NPT		less Steel	
	Performance							
Capacity	Air Temperat	ure Dry Bulb	Air Pr	ressure Drop	Gas Pr	essure	Modulation	
Btu/hr	Entering °F	Leaving °F		inH₂O	Minimum inH₂O	Maximum inH₂O		
160000	55.0	111.7		0.02	5	14	Modulating 5:1 Turndown	

Unit Discharge Conditions								
	AirTemperature							
Motor Heat Btu/hr	Moisture Remov a lb/h	al Unit Leaving Dry Bulb °F	Unit Leaving Wet Bulb °F	Unit Leaving Dewpoint °F				
5456	29.7	55.4	53.8	52.9				
	Minimum Airflows							
Fan Only Minimum	n Airflow	Heating	g Minimum Airflow					
858 CFM		1157 CFM		2458 CFM				
Notes	Refer to fan curv	e for applicability of approximate	airflows					

C		
		7 Section
Conta	Chong	,

		Comp	ressor			
Туре	Quantity	Refrigerant Charge Ib	Total Power Capacity Control Comp		Compressor Isolation	
Inverter Scroll + Fixed Scroll	2	25.8	9.09 kW Mod Control with Inverter Compressor		Rubber in Shear	
		Compress	sor Amps:			
	Compressor 1	4.5 A				
	Compressor 2			7.9 A		
Compressor Options: Suction and Discharge Isolation Valves						
		Conder	iser Coil			
Ту	pe	Fins p	er Inch Fin Material			
Aluminum N	licrochannel	2	3	Alum	inum	
Coil Opti	ons: Vandal Guard					
		Condenser	Fan Motors			
	Number of Motors			Full Load Current (Total)		
	2			1.8 A		
	ŀ	AHRI 360 Certified Data at A	HRI 360 Standard Cond	itions		
Net Ca	apacity	EER	IEER	ASHRA	E 90.1	
12100	0 Btu/hr	12.1	18.8	ASHRAE 90.1-2	016 compliant	

Job Number: GA8KLG Job Name: 122313 - B

GA8KLG 122313 - Blackhall Studios Page 63 of 115 Prepared Date:

Internal Pressure Drop Calculation					
External Static Pressure:	1.50 inH₂O				
Filter:	0.19 inH₂O				
Dirty Filter:	0.50 inH ₂ O				
Outside Air:	0.06 inH ₂ O				
DX Coil:	0.14 inH ₂ O				
Hot Gas Reheat:	0.03 inH ₂ O				
Gas Heat:	0.02 inH ₂ O				
Total Static Pressure:	2.44 inH ₂ O				

Sound								
	Sound Power (db)							
Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Inlet	81	82	78	79	74	71	65	60
Discharge	81	85	81	84	80	77	73	68
Radiated	85	85	81	78	76	71	64	57

Options						
	Unit					
Ventilation Controls:	Outdoor Air Monitor					
Electrical						
Field Connection:	Fused Disc: 65 kAIC - 208/230/460V: 22 kAIC 575V					
Powered Receptacle:	eptacle: Field powered 115V GFI outlet					
Power Options:	r Options: Phase Failure Monitor					
Controls						
Communication Card:	BACnet/MSTP card, Factory installed					

Factory Installed Sensors

Leaving Coil/Entering Fan Temperature Sensor
Duct High Limit Switch
Duct Static Pressure Sensor
BACnet/MSTP Card
Return Air Temperature Sensor
Discharge Air Temperature sensor – Wired in unit, mounted in supply duct
Outside Air Temperature Sensor
Dirty Filter On/Off Switch
Supply Fan Air Proving Via Modbus
Building Static Pressure Sensor
Ebtron Airflow Station

Warranty

Parts:	Standard One Year
Compressor:	Additional Four Year, Five Year Total
Gas Heat Exchanger:	Standard one Year

AHRI Certification

ALR CERTIFIED

All equipment is rated and certified in accordance with AHRI 360.

	Specials				
		Unit			
	Specials Description:	Provide stainless steel indoor coil casing. Use FPA# "Stainless"			
Notes					

Rebel 3-15 Tons Factory Installed Sensor Locations¹

Only applies to units with factory mounted controls

SENSOR DESCRIPTION	LABEL	
Return Air Temp Sensor	A	
Discharge Air Temperature sensor – Wired in unit, mounted in supply duct	В	
Outside Air Temp Sensor	С	
Return air Enthalpy Sensor	D	
Outside Air Enthalpy Sensor	E	
Dirty Filter On/Off Switch	F	
Supply Fan Air Proving Via Modbus	G	
Duct High Limit Switch	Н	
Duct Static Pressure Sensor	I	
Building static pressure sensor	J	
Leaving Coil/Entering Fan Temp Sensor	К	
BACnet/IP card		
LON card	DAC	
BACnet/MSTP card	Comm	
Daikin Intelligent systems Card		
DIII Gateway Card (VRV Communication)		
Condensate Overflow Switch	L	
Ebtron Airflow Station	M	
Supply Leaving Wheel Temp Sensor	N	
Exhaust Leaving Wheel Temp Sensor	0	
Return Air Relative Humidity Sensor	Р	
Energy Wheel VFD	Q	

1) Sensors provided are based on unit selection. Refer to unit specific technical data sheet for selection specific sensor list.

Product Drawing	Unit Tag: AC-2	25A,25B			DAIK	
Product:	Project Name:	: 122313 - Blac	khall Studios	12600 Ind	ustrial Bark Blvd Minn	Annalis MN EE441
Model: DPS010A	Sales Office: Norman S. Wright-Climatec			www.DaikinApplied.com Software Version: 09		
Sales Engineer:	Feb. 02, 2022	Ver/Rev:	Sheet 1 of 1	Scale: NTS	Tolerance: +/-0.25"	Dwg Units: in [mm]
No change to this drawing may be made unless approv specifications.	ed in writing by Da	ikin Applied. Purch	aser must determi	ne that the eq	uipment is fit and su	fficient for the job

Job Number: GA8KLG Job Name: 122313 - Page 67 of 115 Prepared Date:

No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.

Page 69 of 115

Drawings(3) for AC-25A,25B

Page 71 of 115

73 of 115

Technical Data Sheet for AC-6A,7A,8A,9A

Job In	formation	Technical Data Sheet
Job Name	122313 - Blackhall Studi	ios
Date	2/2/2022	
Submitted By	Adrian Miramontes	
Software Version	07.91	
Unit Tag	AC-6A, AC-7A, AC-8A, A	C-9A
FPA#	TBD	

Unit Overview

Model Number	Voltage V/Hz/Phase	Design Cooling Capacity ^{Btu/hr}	AHRI 360 Standard Efficiency	ASHRAE 90.1
RDT120D	460/60/3	1129055	9.8	2016 Compliant

	Unit
Model Number:	RDT120D
Altitude:	0 ft
Heat Type:	None
Condenser Type:	Air-Cooled
Condenser Sound:	Quiet Condenser Fans
Approval	ETL/MEA-USA unit

Physical				
		Unit		
Length	Height	Width	Weight	Estimated Lifting Lugs
499 in	97.0 in	99.0 in	17241 lb	3 per side

Electrical							
Voltage		MCA	MROPD	SCCR			
460/60/3		258.6 A	300 A	65 kAIC			
	Note:	Use only copper supply wires with ampacity based on 75° C conductor rating. Connections to terminals must be made with copper lugs and copper wire.					

Return/Outside/Exhaust Air						
	Outside Air Option					
Туре	Pressure Drop	Damper Actuator				
California and 90.1 Compliant Economizer	0.32 inH ₂ O	Electric Actuator				
	Return Air Option					
Return Air Location: Back						

Blank Section	
Section Length:	48.0 in
Notes:	

Technical Data Sheet for AC-6A,7A,8A,9A

Filter Section						
		Physical				
Туре	(Quantity) Height x Width x Depth	Face Area	Face Velocity	Air Pressure Drop		
2 in. 85% Nominal Efficiency (MERV 13)	(11) 16 in x 20 in x 2 in (33) 16 in x 25 in x 2 in	116.1 ft ²	327.3 ft/min	$0.20 \text{ inH}_2\text{O}$		

Blank Section

Section Length: 48.0 in Notes:

DX Cooling Coil

Physical								
Fins per Inch	Rows	Face Area	Face Velocity Air Pressure drop Drain Pan Material			Casing Material		
12	6	75.9 ft ²	500.7 ft/min 0.85 in		inH ₂ O Stainless Steel		Stainless Steel	
	Cooling Performance							
Capacity		Refrigerant	Indoor Air Temperature				Ambient Air Temperature	
Total	Sensible	Туре	Type Entering		Leaving		Dry Bulb	Wet Bulb
Btu/hr	Btu/hr		Dry Bulb °F	Wet Bulb °F	Dry Bulb °F	Wet Bulb °F	°F	°F
1129055	1095729	R410A	74.0	58.3	47.6	46.9	105.0	70.0

Biological Control: UV Light

Fan Section								
	Fan							
Туре	Fan Wheel Diameter	Fan Isolation	Fan Efficiency Index					
AF SWSI	49 in	0.719						
	Perfor	mance						
Airflow	Total Static Pressure	Fan Speed	Brake Horsepower					
38000 CFM	3.87 inH₂O	832 rpm	36.28 нр					
	Motor		Drive					
Туре	Horsepower	FLA	Туре					
ODP, Premium Efficiency	40.0 hp	46.0 A	Standard service factor, Fixed drive					

Discharge Location: Left Side

Unit Discharge Conditions

AirTemperature						
DX coil Configuration:	Draw-thru Coil					
Motor Heat	Moisture Removal	Unit Leaving Dry Bulb	Unit Leaving Wet Bulb	Unit Leaving Dewpoint		
Btu/hr	lb/h	°F	°F	°F		
102546	29.1	50.1	47.7	46.2		

Technical Data Sheet for AC-6A,7A,8A,9A

Condensing Section						
Compressor						
Туре	Quantity	Total Power	Capacity Control	Compressor Isolation		
Scroll	6	119.1 kW	6 stage	Resilient		
		Compressor Amps:				
Fixed S	Speed Compressor 1		26.9 A			
Fixed S	Speed Compressor 2		34.8 A			
Fixed S	Speed Compressor 3		26.9 /	N Contraction of the second seco		
Fixed S	Speed Compressor 4		34.8 A			
Fixed S	Speed Compressor 5		26.9 A			
Fixed Speed Compressor 6			34.8 A			
Compressor Options:	Refrigeration Service Valves					
Piping Options:	Hot gas bypass, circuit 1, 2, Replaceable core filter drier					
		Condenser Coil				
Туре	Fins per	Inch	Fin Material	Refrigerant Charge		
Aluminum tube MicroCh	annel 18		Aluminum	159.0 lb		
Condenser Coil Options:	Build in Hail Protection					
		Condenser Fan Motors				
Ν	lumber of Motors		Full Load Current (each)			
9			1.5 A			
AHRI 360 Certified Data at AHRI 360 Standard Conditions						
EER		IEER	EER ASHRAE 90.1			
9.8		13.4	13.4 2016 Compliant			
Cound						

Jound								
Sound Power (db)								
Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Inlet	85	84	79	74	71	64	56	48
Discharge	86	83	79	77	76	71	63	56
Radiated	-	93	85	87	89	89	83	74

Supply Fan Total Pressure Drop Calculation						
External Static Pressure:	1.50 inH₂O					
Filter:	0.20 inH ₂ O					
Dirty Filter:	1.00 inH ₂ O					
Outside Air:	0.32 inH ₂ O					
DX Coil:	0.85 inH ₂ O					
Total Static Pressure:	3.87 inH ₂ O					
Technical Data Sheet for AC-6A,7A,8A,9A

Options					
	Unit				
Unit Exterior:	Prepainted Galvanized Steel				
Insulation and Liners:	2", 1 1/2# nominal insulation, full solid liners, perf in fan sections				
Underliners:	Sheet Metal Underliner - Recommended for rail mounted units				
Fan Section Lights:	Supply Fan Section Light				
Fan Shaft Grounding:	Fan motors are provided with shaft grounding rings and class H insulation.				
	Electrical				
Electrical Connection Option:	Single thru door disconnect switch				
GFI 115v Receptacle:	Field powered				
Power Options:	Phase Failure and Groundfault Protection				
	Controls				
Application:	Variable Volume - Discharge Air Control				
Temperature Control:	DAC, BACNet MSTP communication card				
Fan Speed Control:	Factory mounted Inverter				
Inverter Manufacturer:	Daikin				
Inverter Location:	Inverter(s) in separate section				
Airflow Control:	1 duct sensor				
Economizer Control:	Outside Air Dry Bulb and Enthalpy Control				
Bypass Contactors:	Factory mounted Bypass Contactors				
Low Ambient:	Speedtrol, operation to 0 deg F (-18 deg C)				

Warranty

Parts: Compressor:

Standard 1 year Extended 4 year, 5 year total

AHRI Certification

All equipment is rated and certified in accordance with AHRI 360.

	Specials
	Unit
Specials Description:	 Provide 65 kAIC rating. Unit is provided with higher than standard SCCR rating and must be marked as a special for processing. Pricing is already accounted for in the item summary. Use FPA# "SCCR" Unit provided with factory wired terminals for Purge Sequence. Unit will be marked as a special for processing. Use FPA# "Purge" if no other specials from Applications. Provide Condensate Overflow alarm for Cooling Coil drain pan. Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing if no other specials from Applications Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing. Use FPA# "SSCasing" if no other specials from Applications Provide a 72" economizer section with reduced return opening. Unit must be marked as a special for processing. Use FPA# "72Econo" if no other specials from Applications. Provide left side return Blank 48 in section located between position A and B.

Notes

Unit has been selected with bare condenser coil. Is this application more than 50 miles from the coast?

Drawings(1) for AC-6A,7A,8A,9A

Drawings(3) for AC-6A,7A,8A,9A

Drawings(6) for AC-6A,7A,8A,9A

Product Drawing	Unit Tag: AC-	Unit Tag: AC-6A,7A,8A,9A			: Norman S. Wright-Clin	natec Mechl Equip	DAIKIN	
Product:	Project Name:	Project Name: 122313 - Blackhall Studios Sales Engineer:			12600 Inductrial Bark Blvd Minneapolic MNI EE441			
Model: RDT120D	Feb. 02, 2022	Ver/Rev:	Sheet: 1 of 1	Scale: NTS	Tolerance: +/- 0.25"	Dwg Units: in [mm]	www.DaikinApplied.com	Software Version: 07.91
No change to this drawing may be made	e unless approved in writing by Daik	in Applied. Purc	haser must determine	that the equipr	nent is fit and sufficien	t for the job specificat	ions.	

www.DaikinApplied.com

2/2/2022

Dimensions						
Description Letter Dimensions (in						
Curb Length	A	353.6				
Condenser Rail	В	99.0				
Return Air Opening Length	С	31.8				
Supply Air Opening Length	D	0.0				
Return Air Opening Width	E	87.0				
Supply Air Opening Width	F	81.0				
Condenser Rail Overhang	G	5.0				
Condenser Rail Overhang	н	5.0				
Return Air Opening Location	J	6.8				

Roofcurb Dimensions_Drawing for AC-6A, 7A, 8A, 9A

No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.

Roofcurb Knockout medium large box_Drawing for AC-6A,7A,8A,9A

Unit Knockout, Large Box_Drawing for AC-6A,7A,8A,9A

Job Inf	Technical Data Sheet				
Job Name	122313 - Blackhall Studios				
Date	2/2/2022				
Submitted By	Adrian Miramontes				
Software Version	07.91				
Unit Tag	AC-23, AC-23B, AC-23C, AC-23D, AC-23E, AC-23F				
FPA#	TBD				

Model Number	Voltage V/Hz/Phase	Design Cooling Capacity _{Btu/hr}	AHRI 360 Standard Efficiency	ASHRAE 90.1
RPS091D	460/60/3	894101	10.4	2016 Compliant

Unit					
Model Number:	RPS091D				
Altitude:	0 ft				
Heat Type:	None				
Condenser Type:	Air-Cooled				
Condenser Sound:	Quiet Condenser Fans				
Approval	ETL/MEA-USA unit				

Physical				
		Unit		
Length	Height	Width	Weight	Estimated Lifting Lugs
451 in	97.0 in	99.0 in	14730 lb	3 per side
431 11	57.0 m	55.6 11	14730 15	5 per side

Electrical				
Voltage		MCA	MROPD	SCCR
460/60/3		222.4 A	250 A	65 kAIC
	Note:	Use only copper supply wires with amp terminals must be made with copper lu	acity based on 75° C conductor ratin ugs and copper wire.	g. Connections to

Return/Outside/Exhaust Air								
Outside Air Option								
Туре			Pressure	e Drop			Damper Actuator	
Plenum on	ly		0.32 i	inH₂O		Electric Actuator		
			Return Ai	ir Option				
Return Air Location:	Left							
Fan								
Туре	Fan Diamete	er	Vibration	Isolation		Drive Type	Fan Efficiency Index	
Prop	2 - 36 in Pr	- 36 in Prop		None Star Factor		ndard Service or, Fixed Drive	0.336	
			Mot	tor				
Horsepowe	r		Тур	pe			Full Load Current	
10.0 HP			ODP, Premium Efficiency			6.2 A		
Performance								
Air Flow CFM	Exte	rnal Static I inH₂O	Pressure		Fan Speed rpm		Brake Horsepower HP	
28000		0.5			1112		7.24	

Filter Section				
		Physical		
Туре	(Quantity) Height x Width x Depth	Face Area	Face Velocity	Air Pressure Drop
2 in. 85% Nominal Efficiency (MERV 13)	(11) 16 in x 20 in x 2 in (33) 16 in x 25 in x 2 in	116.1 ft ²	241.2 ft/min	0.13 inH₂O

DX Cooling Coil Physical Fins per Inch Rows Face Area Face Velocity Air Pressure drop **Drain Pan Material Casing Material** 12 4 53.9 ft² 0.65 inH₂O **Stainless Steel Stainless Steel** 519.5 ft/min **Cooling Performance** Refrigerant Ambient Air Temperature Capacity Indoor Air Temperature Sensible Туре Total Entering Leaving Dry Bulb Wet Bulb Btu/hr Btu/hr Dry Bulb Wet Bulb Dry Bulb Wet Bulb °F °F °F °F °F °F 894101 794086 R410A 78.5 63.1 52.6 52.0 105.0 70.0

Fan Section								
Fan								
Туре	Fan Wheel Diameter	Fan Isolation	Fan Efficiency Index					
AF DWDI	36 in	Rubber in Shear	0.870					
Performance								
Airflow	Total Static Pressure	Fan Speed	Brake Horsepower					
28000 сғм	4.61 inH₂O	1079 rpm	28.82 нр					
	Motor		Drive					
Туре	Horsepower	FLA	Туре					
ODP, Premium Efficiency	40.0 hp	46.0 A	Standard service factor, Fixed drive					

Discharge Plenum

Discharge Location: Left - Opposite Drive Side

Unit Discharge Conditions

		AirTemperature		
DX coil Configuration:	Draw-thru Coil			
Motor Heat	Moisture Removal	Unit Leaving Dry Bulb	Unit Leaving Wet Bulb	Unit Leaving Dewpoint
Btu/hr	lb/h	°F	°F	°F
83565	85.0	55.3	52.9	51.6

Condensing Section						
		Compressor				
Туре	Quantity	Total Power	Cap	oacity Control	Compressor Isolation	
Scroll	6	85.0 kW		6 stage	Resilient	
		Compressor Am	ps:			
Fixed S	peed Compressor 1			23.1 A		
Fixed S			23.1 A			
Fixed S	peed Compressor 3			23.1 A		
Fixed S	peed Compressor 4			23.1 A		
Fixed Speed Compressor 5				23.1 A		
Fixed Speed Compressor 6				23.1 A		
Compressor Options:	Compressor Options: Refrigeration Service Valves					
Piping Options:	Piping Options: Hot gas bypass, circuit 1, 2, Replaceab					
	Condenser Coil					
Туре	Fins per	nch	Fin Material		Refrigerant Charge	
Aluminum tube MicroCha	annel 18		Aluminum		96.0 lb	
Condenser Coil Options:	nser Coil Options: Build in Hail Protection					
Condenser Fan Motors						
Number of Motors			Full Load Current (each)			
8			1.5 A			
	AHRI 360 C	ertified Data at AHRI 36	0 Standard Condition	IS		
EER		IEER			ASHRAE 90.1	
10.4		13.8	.8 2016 Co		16 Compliant	

300110								
				Sound Power (db)				
Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Inlet	93	95	94	95	90	85	81	78
Discharge	93	92	87	85	83	78	71	64
Radiated	-	94	85	85	86	85	79	73

Supply Fan Total Pressure Drop	Calculation
External Static Pressure:	2.00 inH ₂ O
Filter:	0.13 inH ₂ O
Dirty Filter:	1.00 inH ₂ O
Outside Air:	0.32 inH ₂ O
DX Coil:	0.65 inH₂O
Total Static Pressure:	4.61 inH₂O

Return/Exhaust Fan Total Pressure Drop Calculation		
External Static Pressure:	0.50 inH₂O	
Total Static Pressure:	0.50 inH₂O	

	Options	
	Unit	
Unit Exterior:	Prepainted Galvanized Steel	
Insulation and Liners:	2", 1 1/2# nominal insulation, full solid liners, perf in fan sections	
Underliners:	Sheet Metal Underliner - Recommended for rail mounted units	
Belt Guards:	Exhaust Air Fan Belt Guard	
Fan Shaft Grounding:	Fan motors are provided with shaft grounding rings and class H insulation.	
	Electrical	
Electrical Connection Option:	Single thru door disconnect switch	
GFI 115v Receptacle:	Field powered	
Power Options:	wer Options: Phase Failure and Groundfault Protection	
	Controls	
Application:	Variable Volume - Discharge Air Control	
Temperature Control:	DAC, BACNet MSTP communication card	
Fan Speed Control:	Factory mounted Inverter	
Inverter Manufacturer:	Daikin	
Inverter Location:	Inverter(s) in fan section	
Airflow Control:	1 duct sensor, 1 space sensor (Bldg Pressure)	
Economizer Control:	Outside Air Dry Bulb and Enthalpy Control	
Bypass Contactors:	Factory mounted Bypass Contactors	
Low Ambient:	Speedtrol, operation to 0 deg F (-18 deg C)	

Warranty

Parts: Compressor:

Standard 1 year Extended 4 year, 5 year total

AHRI Certification

All equipment is rated and certified in accordance with AHRI 360.

	Specials
	Unit
Specials Description:	 Provide 2x2 fan array with (2) VFDs, each VFD controlling (2) fans. Provide 65 kAIC rating. Unit is provided with higher than standard SCCR rating and must be marked as a special for processing. Pricing is already accounted for in the item summary. Use FPA# "SCCR" Unit provided with factory wired terminals for Purge Sequence. Unit will be marked as a special for processing . Use FPA# "Purge" if no other specials from Applications. Provide Condensate Overflow alarm for Cooling Coil drain pan. Provide Stainless Steel coil casing on DX coil. Unit will be marked as a special for processing. Use FPA# "SSCasing" if no other specials from Applications

Notes

Unit has been selected with bare condenser coil. Is this application more than 50 miles from the coast?

Drawings(1) for AC-23A,23B,23C,23D,23E,23F

Drawings(3) for AC-23A,23B,23C,23D,23E,23F

Drawings(5) for AC-23A,23B,23C,23D,23E,23F

urb gaske
gasketing
ailer strip-
upport
insulation'
nized curb
ed

Product Drawing	Unit Tag: AC-23A,23B,23C,23D,23E,23F		Sales Office: Norman S. Wright-Climatec Mechl Equip					
Product:	Project Name: 122313 - Blackhall Studios		Sales Engineer:					
Model: RPS091D	Feb. 02, 2022	Ver/Rev:	Sheet: 1 of 1	Scale: NTS	Tolerance: +/- 0.25"	Dwg Units: in [mm]	www.DaikinApplied.com	Software Version: 07.91
No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.								

97 of 115 Page

Dimensions				
Description	Letter	Dimensions (in)		
Curb Length	A	305.6		
Condenser Rail	В	99.0		
Return Air Opening Length	С	85.0		
Supply Air Opening Length	D	85.0		
Return Air Opening Width	E	87.0		
Supply Air Opening Width	F	81.0		
Condenser Rail Overhang	G	5.0		
Condenser Rail Overhang	Н	5.0		
Return Air Opening Location	J	3.0		

Job In	formation	Technical Data Sheet	
Job Name	122313 - Blackhall Stud	ios	
Date	2/2/2022		
Submitted By	Adrian Miramontes		
Software Version	09.70		
Unit Tag	Restrooms 100% OSA -1 14B, AC-15B, AC-16B, A	l, AC-1B, AC-2B, AC-3B, AC-4 C-17B, AC-18C, AC-18D, AC-1	B, AC-5C, AC-5D, AC-10B, AC-11B, AC-12B, AC-13B, L9B
FPA#	TBD		

-	
	Maryiaw
	IVELVIEW

Model Number	Voltage	Design Cooling	EER@95/75 EAT	ISMRE Per AHRI		
	v/nz/rilase	Capacity Btu/hr	EER	IEER	920-2016	
DPS006A	460/60/3	71118	11.3	Not Available	ASHRAE 90.1-2016 compliant	

	Unit
Model Number:	DPS006A
Model Type:	Cooling
Heat Type:	Gas
Hot Gas Reheat:	MHGRH with Field Provided Humidity Sensor
Energy Recovery:	None
Application:	Constant Volume (100% OA; VAV capable SAF)
Controls:	Microtech III
Outside Air:	100% Outside Air
Altitude:	0 ft
Approval	cETLus

Physical

Dimensions and Weight						
Length	Height	Width	Weight			
67.0 in	40.8in	87.0 in	1361 lb			
Corner Weights						
L1	L2	L3	L4			
219 lb	243 lb	473 lb	426 lb			
	Const	ruction				
Exterior	Insulation and Liners	Air Opening Location				
		Return	Supply			
Painted Galvanized Steel	1" Injected Foam, R-7, Galvanized Steel Liner	None	Bottom			

Electrical					
Unit FLA	MCA	MROPD	SCCR		
10.0 A	11.7 A	15 A	65 kAIC		
Note:	Note: Use only copper supply wires with ampacity based on 75° C conductor rating. Connections to terminals must be made with copper lugs and copper wire.				

Return/Outside	e/Exhaust Air		
		Outside Air Option	
	Туре	Damper Pressure Drop	Exhaust Air Type
	None	0.07 inH₂O	None
Job Number:	GA8KLG	Page Pre	pared Date: 2/2/2022
Job Name:	122313 - Blackhall Studios	103 of 115	www.DaikinApplied.com

Filter Section				
		Physical		
Туре	Quantity / Size	Face Area	Face Velocity	Air Pressure Drop
2" MERV 8 & 4" MERV 14 Filters	4 / 16 in x 16 in x 2 in & 4 / 16 in x 16 in x 4 in	7.1 ft ²	183.1 ft/min	0.09

DX Cooling Coil

Physical								
Coil Type	Refrigerant Type	Fins per Inch	Rows	Face Area	Face Veloc	ity Ai	r Pressure drop	Drain Pan Material
Cu Tube/ Al Fin	R410A	16	4	6.0 ft²	215.2 ft/n	nin O.	.23 inH₂O	Stainless Steel
Cooling Performance								
Capacity Indoor Air Temperature								
	Capacity			Indoor Air	Temperature			Ambient air
Total	Capacity Sensible	Moisture	Enterin	Indoor Air 3	Temperature	Leaving		Ambient air Temperature
Total Btu/hr	Capacity Sensible Btu/hr	Moisture Removal lb/h	Enterin Dry Bulb °F	Indoor Air 3 Wet Bulb °F	Temperature Dry Bulb V °F	Leaving Net Bulb °F	Dewpoint °F	Ambient air Temperature °F
Total Btu/hr 71118	Capacity Sensible Btu/hr 66323	Moisture Removal Ib/h 3.5	Enterin; Dry Bulb °F 105.0	Indoor Air Wet Bulb °F 74.0	Temperature Dry Bulb °F 58.3	Leaving Net Bulb °F 58.1	Dewpoint °F 58.0	Ambient air Temperature °F 105.0

Hot Gas Reheat Coil Section						
Туре	Face Area	Air Pressure Drop	Total Capacity	Leaving Air Temperature		
				Dry Bulb	Wet Bulb	
Aluminum Tube Micro-Channel	5.5 ft ²	0.03 inH₂O	16440 Btu/hr	70.0 °F	62.2 °F	

Fan Section

Fan							
Туре		Fan Wheel Diameter Fan Isolation		Fan Isolation			
SWSI AF		14 in		None			
	Performance						
Airflow	Total Static Pressure	Fan Speed	Brake Horsepower	Altitude			
1300 CFM	2.1 inH₂O	1881 rpm	0.77 нр	0 ft			
	Drive						
Туре	Horsepower	Efficiency	FLA	Туре			
ECM Motor	2.3	Premium	2.3 A	Direct Drive			

Gas Heat Section

Physical								
Airflow	Max Allowab Temp R	Max Allowable Burner S Temp Rise		Connection (Qty) Size		Heat Exch	Heat Exchanger Material	
1300 CFM	100.0	°F 80	80 MBH (1) 0.5 in. Female NPT		(1) 0.5 in. Female NPT Stainless Stee		less Steel	
	Performance							
Capacity	Air Temperat	ure Dry Bulb	Air Pressure Drop Gas Pressu		essure	Modulation		
Btu/hr	Entering °F	Leaving °F		inH₂O	Minimum inH₂O	Maximum inH₂O		
64000	38.0	83.4		0.14	5	14	Modulating 5:1 Turndown	

Unit Discharge Condition	IS						
		AirTemperature					
Motor Heat Btu/hr	Moisture Remova l lb/h	I Unit Leaving Dry Bulb °F	Unit Leaving Wet Bulb °F	Unit Leaving Dewpoint °F			
2535	3.5	60.1	58.7	58.0			
	Minimum Airflows						
Fan Only Minimum	Airflow	Cooling Minimum Airflow	Heating	Minimum Airflow			
429 CFM 45		453 сғм		590 CFM			
Notes	Refer to fan curve	for applicability of approximate	airflows				

Condensing Section							
Compressor							
Туре	Quantity	Refrigerant Charge Ib	Total Power	Compressor Isolation			
Inverter Scroll	1	18.2	5.09 kW	Mod Control with Inverter Compressor	Rubber in Shear		
		Compress	or Amps:				
Compressor 1				6.8 A			
Compressor Opti	ons: Suction and Disc	charge Isolation Valves					
		Conden	ser Coil				
Ту	ре	Fins pe	er Inch Fin Material				
Сорре	r Tube	2	3 Aluminum				
Coil Options: Vandal Guard							
		Condenser	Fan Motors				
Number of Motors			Full Load Current (Total)				
1				0.9 A			

Internal Pressure Drop Calculat	ion
External Static Pressure:	1.00 inH ₂ O
Filter:	0.09 inH ₂ O
Dirty Filter:	0.50 inH ₂ O
Outside Air:	0.07 inH ₂ O
DX Coil:	0.23 inH ₂ O
Hot Gas Reheat:	0.03 inH ₂ O
Gas Heat:	0.14 inH ₂ O
Total Static Pressure:	2.06 inH ₂ O

Sound								
Sound Power (db)								
Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Inlet	70	69	77	72	74	73	68	63
Discharge	70	72	80	77	80	79	76	71
Radiated	82	82	78	75	73	68	61	54

Options								
Unit								
Ventilation Controls:	Outdoor Air Monitor							
	Electrical							
Field Connection:	Fused Power Block: 65 kAIC - 208/230/460V: 22 kAIC 575V							
Powered Receptacle:	Field powered 115V GFI outlet							
Power Options:	Phase Failure Monitor							
	Controls							
Communication Card:	BACnet/MSTP card, Factory installed							
	Factory Installed Sensors							
Leaving Coil/Entering Fan Tempera	ture Sensor							
BACnet/MSTP Card								
Discharge Air Temperature sensor -	- Wired in unit, mounted in supply duct							
Outside Air Temperature Sensor								
Dirty Filter On/Off Switch								
Supply Fan Air Proving Via Modbus								
Ebtron Airflow Station								
Warranty								
Parts:	Standard One Year							
Compressor:	Additional Four Year, Five Year Total							
Gas Heat Exchanger:	Standard one Year							

Specials					
	Unit				
Specials Description:	Provide stainless steel indoor coil casing. Use FPA# "Stainless"				

Notes

Accessories	
	Optional
Part Number	Description
910143408	DDC Space Sensor with Setpoint Adj and Tenant Over

Page 107 of 115

Rebel 3-15 Tons Factory Installed Sensor Locations¹

Only applies to units with factory mounted controls

SENSOR DESCRIPTION	LABEL	
Return Air Temp Sensor	Α	
Discharge Air Temperature sensor – Wired in unit, mounted in supply duct	В	
Outside Air Temp Sensor	С	
Return air Enthalpy Sensor	D	
Outside Air Enthalpy Sensor	E	
Dirty Filter On/Off Switch	F	
Supply Fan Air Proving Via Modbus	G	
Duct High Limit Switch	Н	
Duct Static Pressure Sensor	I	
Building static pressure sensor	J	
Leaving Coil/Entering Fan Temp Sensor	К	
BACnet/IP card		
LON card	DAC	
BACnet/MSTP card	Comm	
Daikin Intelligent systems Card	Comm.	
DIII Gateway Card (VRV Communication)		
Condensate Overflow Switch	L	
Ebtron Airflow Station	М	
Supply Leaving Wheel Temp Sensor	N	
Exhaust Leaving Wheel Temp Sensor	0	
Return Air Relative Humidity Sensor	Р	
Energy Wheel VFD	Q	

1) Sensors provided are based on unit selection. Refer to unit specific technical data sheet for selection specific sensor list.

Product Drawing	Unit Tag: Restrooms 100% OSA			DAIKIN			
Product:	Project Name:	: 122313 - Blac	khall Studios	12600 Industrial Park Rhyd. Minnoapolic, MN 55441			
Model: DPS006A	Sales Office: Norman S. Wright-Climatec			www.DaikinApplied.com Software Version: 09.70			
Sales Engineer:	Feb. 02, 2022	Ver/Rev:	Sheet 1 of 1	Scale: NTS	Tolerance: +/-0.25"	Dwg Units: in [mm]	
No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.							

Job Number: GA8KLG Job Name: 122313 - Page 108 of 115 Prepared Date:

(2) Horizontal gas connection only. Gas pipe routing within the roofcurb is not available.

Product Drawing	Unit Tag: Res	Unit Tag: Restrooms 100% OSA Project Name: 122313 - Blackhall Studios			2: Norman S. Wright-Clin	natec Mechl Equip	DAIKIN	
Product:	Project Name:				eer: SalesEngineer			
Model: DPS006A	Feb. 02, 2022	Ver/Rev:	Sheet: 1 of 1	Scale: NTS	Tolerance: +/- 0.25"	Dwg Units: in [mm]	www.DaikinApplied.com	Software Version: 09.70

No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.

Drawings(1) for Restrooms 100% OSA

Drawings(3) for Restrooms 100% OSA

Job Name:

113 of 115 Page

Product Drawing Unit Tag: Restrooms 100% OSA Sales Office: Norman S. Wright-Climatec Mechl Equip DAIKIN Product: Project Name: 122313 - Blackhall Studios Sales Engineer: 13600 Industrial Park Blvd. Minneapolis, MN 55441 Model: DPS006A Feb. 02, 2022 Ver/Rev: Sheet: 1 of 1 Scale: NTS Tolerance: +/- 0.25" Dwg Units: in [mm] www.DaikinApplied.com Software Version: 09.70 No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.

Introduction

The space temperature sensor is designed to work with the MicroTech® III unit controller and is a 10k thermistor used to measure the space conditions.

This device is not a traditional 7-day programmable thermostat. The sensor can be used on either constant air volume (CAV) or variable air volume (VAV) applications.

On CAV systems, it acts as the control device for the heating and cooling operations for occupied and unoccupied time periods.

On VAV systems, it is not traditionally used as the control device but used for the unoccupied heating and cooling space sensor.

The sensor features a large format LCD display that senses the space temperature and displays the space temperature. It also has the setpoint adjustment keys to increase or decrease the setpoint. When the adjustment keys are first pressed, the display will show the current reading for the setpoint. Further pressing of these keys will change the setpoint value.

The sensor also has a tenant override button. Pressing this will initiate the tenant override sequence at the MicroTech III controller.

*	72.5	Engineering Units
0	FOAREN	Setpoint Up/Down Buttons Tenant Override Button

Specifications

Daikin Part Number	910143408				
Power	15 to 28 VAC (924 VAC nominal)				
Power Consumption	0.17 VA maximum AC				
Wiring	See Terminal section, page 3				
	LCD – 3.5 digits @ 0.6 inch H				
Display	Temperature display units 0.1°(F/C) increments				
	Setpoints in 0.5° steps				
Butten Ontione	Setpoint Up/Down buttons				
Button Options	Tenant Override button				
Environmental Ambient	Temperature - 32 to 122°F (0-50°C)				
Environmental Ambient	Humidity - 0 95% RH non-condensing				
Material ABS plastic, UL94V-0					

114 of 115

Document Summary Page

Model: CUBE-420-75 Belt Drive Upblast Centrifugal Roof Exhaust

Fan

Dimensional								
Quantity	1							
Weight w/o Acc's (lb)	408							
Weight w/ Acc's (lb)	440							
Weight w/ Acc's and Curb (lb)	497							
Max T Motor Frame Size	215							
Standard Curb Cap Size (in.)	52 x 52							
Optional Damper (in.)	42 x 42							
Roof Opening (in.)	44.5 x 44.5							
Performan	ce							
Requested Volume (CFM)	19,500							
Actual Volume (CFM)	19,500							
Total External SP (in. wg)	0.935							
Fan RPM	566							
Operating Power (hp)	6.61							
Elevation (ft)	325							
Airstream Temp.(F)	70							
Air Density (lb/ft3)	0.074							
Drive Loss (%)	3.7							
Tip Speed (ft/min)	6,262							
Static Eff. (%)	45							
Misc Fan Da	ata							
Fan Eff. Index (FEI)	1.09							
Outlet Velocity (ft/min)	2,169							
FEI based on default motor calculation showing lowest efficiency option, for motor specific calculations please contact factory.								
Motor								
Motor Mounted	Yes							
Size (hp)	7 1/2							
Voltage/Cycle/Phase	460/60/3							
Enclosure	ODP							
Motor RPM	1725							

) 7 1/2	Size (hp)
e 460/60/3	Voltage/Cycle/Phase
e ODP	Enclosure
1 1725	Motor RPM
NEMA Premium	Efficiency Rating
s 1	Windings
) 11	NEC FLA* (Amps)
) 13.75	Min. Circuit Ampacity (MCA)
) 20	Max. Overcurrent Protection (MOP)
) 5 kA	Short Circuit Current Rtg (SCCR)

Sound Power by Octave Band

Sound Data	62.5	125	250	500	1000	2000	4000	8000	LwA	dBA	Sones
Inlet	84	92	86	80	76	73	66	61	83	72	22

OVERALL HEIGHT MAY BE GREATER DEPENDING ON MOTOR, ADAPTER, AND/OR HINGE BASE.

Operating point at Total External SP
Fan curve
System curve
Brake horsepower curve

Static Pressure Calculations		
External SP	0.75	in. wg
Damper	0.185	in. wg
Total External SP	0.935	in. wg

Notes:

All dimensions shown are in units of in. *NEC FLA, MCA and MOP are for reference only – based on tables 430.248 or 430.25 of National Electric Code 2020. Actual motor FLA may vary, for sizing thermal overload, consult factory. MCA and MOP values shown only account for the motor, not accessories (damper actuator, field supplied VFD, etc).

LwA - A weighted sound power level, based on ANSI S1.4 dBA - A weighted sound pressure level, based on 11.5 dB attenuation per Octave band at 5 ft - dBA levels are not licensed by AMCA International

Sones - calculated using ANSI/AMCA 301 at 5 ft The motor provided on this fan is inverter ready and meets NEMA MG1 Part 31.4.4.2

P:\122313\1. Engineering\3. Selections\Kevin Smola\122313 - Blackhall Studios Budget.gfcj Generated by: adoyle@nswcla.com

Model: CUBE-420-75

Belt Drive Upblast Centrifugal Roof Exhaust Fan

Standard Construction Features:

- Aluminum housing - Backward inclined aluminum wheel - Curb cap with prepunched mounting holes - Motor and drives isolated on shock mounts - Drain trough - Ball bearing motors - Adjustable motor pulley - Adjustable motor plate -Fan shaft mounted in ball bearing pillow blocks - Bearings meet or exceed temperature rating of fan - Static resistant belts - Corrosion resistant fasteners -Internal lifting lugs

Selected Options & Accessories:

NEMA Premium Efficient Motor - meets NEMA Table 12-12 Motor VFD Rated with Shaft Grounding Protection Motor with Shaft Grounding Standard Curb Cap Size - 52 Square UL/cUL 705 Listed - "Power Ventilators" Switch, NEMA-1, Toggle, Shipped with Unit Junction Box Mounted & Wired Foam Curb Seal (Factory Applied) Bearings with Grease Fittings, L10 life of 100,000 hrs (L50 avg. life 500,000 hrs) Unit Warranty: 1 Yr (Standard) Damper Shipped Loose, WD-100-PB-42X42, Gravity Operated, Not Coated **Selected Sub Marks**

See individual submittals for full details GPI-52-G12

CUBE-420-75 Min/Max Fan Curve

Performance

Requested Volume (CFM)	Actual Volume (CFM)	Total External SP (in. wg)	Fan RPM	Operating Power (hp)
19,500	19,500	0.935	566	6.61

Model: GPI

Roof Curb **Standard Construction Features:**

- Roof Curb fits between the building roof and the fan mounted directly to the roof support structure - Constructed of either 18 ga galvanized steel or 0.064 in. aluminum - Straight Sided without a cant - 2 in. mounting flange - 3 lb density insulation - Height - Available from 12 in. to 42 in. as specified in 0.5 in. increments. Notes: - The maximum roof opening dimension should not be greater than the "Actual" top outside dimension minus 2 in... - The minimum roof opening dimension should be at least 2.5 in. more than the damper dimension or recommended duct size. - The Roof Opening Dimension may or may not be the same as the Structural Opening Dimension. - Damper Tray is optional and must be specified. Tray size is same as damper size. - Security bars are optional and must be specified. Frames and gridwork are all 12 ga steel. Gridwork is welded to the frame and the frame is welded to the curb.

General										
			Sizing	Undersizing	Weight	Shipped				
Tag	Qty	Model	Method	(in.)	(lb)	Assembled				
	1	GPI-52	Nominal	1.5	57	Yes				

Dimensions

	Nominal	Nominal	Actual	Actual	Actual	Actual			Hinge	Hinge
Curb	Outside	Outside	Outside	Outside	Inside	Inside	Flange	Flange	Base	Base
Height	Width	Length	Width	Length	Width	Length	Width	Length	Width*	Length*
(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
12	52	52	50.5	50.5	47	47	54.5	54.5	51	51
*May not b	*May not be applicable									

Accessories

	Security		Insulation
Material	Bars	Liner	(in.)
Galvanized	No	No	1